Aromātai
-\frac{43}{72}\approx -0.597222222
Tauwehe
-\frac{43}{72} = -0.5972222222222222
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{8}+\left(\frac{1}{3}\right)^{2}-\frac{5}{6}
Tātaihia te \frac{1}{2} mā te pū o 3, kia riro ko \frac{1}{8}.
\frac{1}{8}+\frac{1}{9}-\frac{5}{6}
Tātaihia te \frac{1}{3} mā te pū o 2, kia riro ko \frac{1}{9}.
\frac{9}{72}+\frac{8}{72}-\frac{5}{6}
Ko te maha noa iti rawa atu o 8 me 9 ko 72. Me tahuri \frac{1}{8} me \frac{1}{9} ki te hautau me te tautūnga 72.
\frac{9+8}{72}-\frac{5}{6}
Tā te mea he rite te tauraro o \frac{9}{72} me \frac{8}{72}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{17}{72}-\frac{5}{6}
Tāpirihia te 9 ki te 8, ka 17.
\frac{17}{72}-\frac{60}{72}
Ko te maha noa iti rawa atu o 72 me 6 ko 72. Me tahuri \frac{17}{72} me \frac{5}{6} ki te hautau me te tautūnga 72.
\frac{17-60}{72}
Tā te mea he rite te tauraro o \frac{17}{72} me \frac{60}{72}, me tango rāua mā te tango i ō raua taurunga.
-\frac{43}{72}
Tangohia te 60 i te 17, ka -43.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}