Aromātai
-\frac{1}{4}=-0.25
Tauwehe
-\frac{1}{4} = -0.25
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{4}-\sqrt{\frac{1}{4}}
Tātaihia te \frac{1}{2} mā te pū o 2, kia riro ko \frac{1}{4}.
\frac{1}{4}-\frac{1}{2}
Tuhia anō te pūtake rua o te whakawehenga \frac{1}{4} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{4}}. Tuhia te pūtakerua o te taurunga me te tauraro.
\frac{1}{4}-\frac{2}{4}
Ko te maha noa iti rawa atu o 4 me 2 ko 4. Me tahuri \frac{1}{4} me \frac{1}{2} ki te hautau me te tautūnga 4.
\frac{1-2}{4}
Tā te mea he rite te tauraro o \frac{1}{4} me \frac{2}{4}, me tango rāua mā te tango i ō raua taurunga.
-\frac{1}{4}
Tangohia te 2 i te 1, ka -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}