Aromātai
\frac{4096}{3}\approx 1365.333333333
Tauwehe
\frac{2 ^ {12}}{3} = 1365\frac{1}{3} = 1365.3333333333333
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(\frac{1}{2}\right)^{0}\times \left(\frac{1}{2}\right)^{-12}}{\left(\frac{1}{3}\right)^{9}}\times \left(\frac{1}{3}\right)^{10}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te -4 kia riro ai te -12.
\frac{\left(\frac{1}{2}\right)^{-12}}{\left(\frac{1}{3}\right)^{9}}\times \left(\frac{1}{3}\right)^{10}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 0 me te -12 kia riro ai te -12.
\frac{4096}{\left(\frac{1}{3}\right)^{9}}\times \left(\frac{1}{3}\right)^{10}
Tātaihia te \frac{1}{2} mā te pū o -12, kia riro ko 4096.
\frac{4096}{\frac{1}{19683}}\times \left(\frac{1}{3}\right)^{10}
Tātaihia te \frac{1}{3} mā te pū o 9, kia riro ko \frac{1}{19683}.
4096\times 19683\times \left(\frac{1}{3}\right)^{10}
Whakawehe 4096 ki te \frac{1}{19683} mā te whakarea 4096 ki te tau huripoki o \frac{1}{19683}.
80621568\times \left(\frac{1}{3}\right)^{10}
Whakareatia te 4096 ki te 19683, ka 80621568.
80621568\times \frac{1}{59049}
Tātaihia te \frac{1}{3} mā te pū o 10, kia riro ko \frac{1}{59049}.
\frac{4096}{3}
Whakareatia te 80621568 ki te \frac{1}{59049}, ka \frac{4096}{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}