Aromātai
\frac{99}{14}\approx 7.071428571
Tauwehe
\frac{3 ^ {2} \cdot 11}{2 \cdot 7} = 7\frac{1}{14} = 7.071428571428571
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{1\times 19}{2\times 7}}{\frac{2}{4}-\frac{1}{6}}+3
Me whakarea te \frac{1}{2} ki te \frac{19}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\frac{19}{14}}{\frac{2}{4}-\frac{1}{6}}+3
Mahia ngā whakarea i roto i te hautanga \frac{1\times 19}{2\times 7}.
\frac{\frac{19}{14}}{\frac{1}{2}-\frac{1}{6}}+3
Whakahekea te hautanga \frac{2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{\frac{19}{14}}{\frac{3}{6}-\frac{1}{6}}+3
Ko te maha noa iti rawa atu o 2 me 6 ko 6. Me tahuri \frac{1}{2} me \frac{1}{6} ki te hautau me te tautūnga 6.
\frac{\frac{19}{14}}{\frac{3-1}{6}}+3
Tā te mea he rite te tauraro o \frac{3}{6} me \frac{1}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{19}{14}}{\frac{2}{6}}+3
Tangohia te 1 i te 3, ka 2.
\frac{\frac{19}{14}}{\frac{1}{3}}+3
Whakahekea te hautanga \frac{2}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{19}{14}\times 3+3
Whakawehe \frac{19}{14} ki te \frac{1}{3} mā te whakarea \frac{19}{14} ki te tau huripoki o \frac{1}{3}.
\frac{19\times 3}{14}+3
Tuhia te \frac{19}{14}\times 3 hei hautanga kotahi.
\frac{57}{14}+3
Whakareatia te 19 ki te 3, ka 57.
\frac{57}{14}+\frac{42}{14}
Me tahuri te 3 ki te hautau \frac{42}{14}.
\frac{57+42}{14}
Tā te mea he rite te tauraro o \frac{57}{14} me \frac{42}{14}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{99}{14}
Tāpirihia te 57 ki te 42, ka 99.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}