Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{4}\left(\sqrt{3}\right)^{2}-4\sqrt{3}\sqrt{5}+16\left(\sqrt{5}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\frac{1}{2}\sqrt{3}-4\sqrt{5}\right)^{2}.
\frac{1}{4}\times 3-4\sqrt{3}\sqrt{5}+16\left(\sqrt{5}\right)^{2}
Ko te pūrua o \sqrt{3} ko 3.
\frac{3}{4}-4\sqrt{3}\sqrt{5}+16\left(\sqrt{5}\right)^{2}
Whakareatia te \frac{1}{4} ki te 3, ka \frac{3}{4}.
\frac{3}{4}-4\sqrt{15}+16\left(\sqrt{5}\right)^{2}
Hei whakarea \sqrt{3} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
\frac{3}{4}-4\sqrt{15}+16\times 5
Ko te pūrua o \sqrt{5} ko 5.
\frac{3}{4}-4\sqrt{15}+80
Whakareatia te 16 ki te 5, ka 80.
\frac{323}{4}-4\sqrt{15}
Tāpirihia te \frac{3}{4} ki te 80, ka \frac{323}{4}.
\frac{1}{4}\left(\sqrt{3}\right)^{2}-4\sqrt{3}\sqrt{5}+16\left(\sqrt{5}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\frac{1}{2}\sqrt{3}-4\sqrt{5}\right)^{2}.
\frac{1}{4}\times 3-4\sqrt{3}\sqrt{5}+16\left(\sqrt{5}\right)^{2}
Ko te pūrua o \sqrt{3} ko 3.
\frac{3}{4}-4\sqrt{3}\sqrt{5}+16\left(\sqrt{5}\right)^{2}
Whakareatia te \frac{1}{4} ki te 3, ka \frac{3}{4}.
\frac{3}{4}-4\sqrt{15}+16\left(\sqrt{5}\right)^{2}
Hei whakarea \sqrt{3} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
\frac{3}{4}-4\sqrt{15}+16\times 5
Ko te pūrua o \sqrt{5} ko 5.
\frac{3}{4}-4\sqrt{15}+80
Whakareatia te 16 ki te 5, ka 80.
\frac{323}{4}-4\sqrt{15}
Tāpirihia te \frac{3}{4} ki te 80, ka \frac{323}{4}.