Aromātai
\frac{323}{4}-4\sqrt{15}\approx 65.258066615
Whakaroha
\frac{323}{4} - 4 \sqrt{15} = 65.258066615
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
( \frac { 1 } { 2 } \sqrt { 3 } - 4 \sqrt { 5 } ) ^ { 2 } =
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{4}\left(\sqrt{3}\right)^{2}-4\sqrt{3}\sqrt{5}+16\left(\sqrt{5}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\frac{1}{2}\sqrt{3}-4\sqrt{5}\right)^{2}.
\frac{1}{4}\times 3-4\sqrt{3}\sqrt{5}+16\left(\sqrt{5}\right)^{2}
Ko te pūrua o \sqrt{3} ko 3.
\frac{3}{4}-4\sqrt{3}\sqrt{5}+16\left(\sqrt{5}\right)^{2}
Whakareatia te \frac{1}{4} ki te 3, ka \frac{3}{4}.
\frac{3}{4}-4\sqrt{15}+16\left(\sqrt{5}\right)^{2}
Hei whakarea \sqrt{3} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
\frac{3}{4}-4\sqrt{15}+16\times 5
Ko te pūrua o \sqrt{5} ko 5.
\frac{3}{4}-4\sqrt{15}+80
Whakareatia te 16 ki te 5, ka 80.
\frac{323}{4}-4\sqrt{15}
Tāpirihia te \frac{3}{4} ki te 80, ka \frac{323}{4}.
\frac{1}{4}\left(\sqrt{3}\right)^{2}-4\sqrt{3}\sqrt{5}+16\left(\sqrt{5}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\frac{1}{2}\sqrt{3}-4\sqrt{5}\right)^{2}.
\frac{1}{4}\times 3-4\sqrt{3}\sqrt{5}+16\left(\sqrt{5}\right)^{2}
Ko te pūrua o \sqrt{3} ko 3.
\frac{3}{4}-4\sqrt{3}\sqrt{5}+16\left(\sqrt{5}\right)^{2}
Whakareatia te \frac{1}{4} ki te 3, ka \frac{3}{4}.
\frac{3}{4}-4\sqrt{15}+16\left(\sqrt{5}\right)^{2}
Hei whakarea \sqrt{3} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
\frac{3}{4}-4\sqrt{15}+16\times 5
Ko te pūrua o \sqrt{5} ko 5.
\frac{3}{4}-4\sqrt{15}+80
Whakareatia te 16 ki te 5, ka 80.
\frac{323}{4}-4\sqrt{15}
Tāpirihia te \frac{3}{4} ki te 80, ka \frac{323}{4}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}