Aromātai
\frac{1}{27}\approx 0.037037037
Tauwehe
\frac{1}{3 ^ {3}} = 0.037037037037037035
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{1}{2}+\frac{2}{3}-1\right)\left(2+\frac{1}{3}-\frac{2\times 9+1}{9}\right)
Whakawehea te 3 ki te 3, kia riro ko 1.
\left(\frac{3}{6}+\frac{4}{6}-1\right)\left(2+\frac{1}{3}-\frac{2\times 9+1}{9}\right)
Ko te maha noa iti rawa atu o 2 me 3 ko 6. Me tahuri \frac{1}{2} me \frac{2}{3} ki te hautau me te tautūnga 6.
\left(\frac{3+4}{6}-1\right)\left(2+\frac{1}{3}-\frac{2\times 9+1}{9}\right)
Tā te mea he rite te tauraro o \frac{3}{6} me \frac{4}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\left(\frac{7}{6}-1\right)\left(2+\frac{1}{3}-\frac{2\times 9+1}{9}\right)
Tāpirihia te 3 ki te 4, ka 7.
\left(\frac{7}{6}-\frac{6}{6}\right)\left(2+\frac{1}{3}-\frac{2\times 9+1}{9}\right)
Me tahuri te 1 ki te hautau \frac{6}{6}.
\frac{7-6}{6}\left(2+\frac{1}{3}-\frac{2\times 9+1}{9}\right)
Tā te mea he rite te tauraro o \frac{7}{6} me \frac{6}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{6}\left(2+\frac{1}{3}-\frac{2\times 9+1}{9}\right)
Tangohia te 6 i te 7, ka 1.
\frac{1}{6}\left(\frac{6}{3}+\frac{1}{3}-\frac{2\times 9+1}{9}\right)
Me tahuri te 2 ki te hautau \frac{6}{3}.
\frac{1}{6}\left(\frac{6+1}{3}-\frac{2\times 9+1}{9}\right)
Tā te mea he rite te tauraro o \frac{6}{3} me \frac{1}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1}{6}\left(\frac{7}{3}-\frac{2\times 9+1}{9}\right)
Tāpirihia te 6 ki te 1, ka 7.
\frac{1}{6}\left(\frac{7}{3}-\frac{18+1}{9}\right)
Whakareatia te 2 ki te 9, ka 18.
\frac{1}{6}\left(\frac{7}{3}-\frac{19}{9}\right)
Tāpirihia te 18 ki te 1, ka 19.
\frac{1}{6}\left(\frac{21}{9}-\frac{19}{9}\right)
Ko te maha noa iti rawa atu o 3 me 9 ko 9. Me tahuri \frac{7}{3} me \frac{19}{9} ki te hautau me te tautūnga 9.
\frac{1}{6}\times \frac{21-19}{9}
Tā te mea he rite te tauraro o \frac{21}{9} me \frac{19}{9}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{6}\times \frac{2}{9}
Tangohia te 19 i te 21, ka 2.
\frac{1\times 2}{6\times 9}
Me whakarea te \frac{1}{6} ki te \frac{2}{9} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{2}{54}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 2}{6\times 9}.
\frac{1}{27}
Whakahekea te hautanga \frac{2}{54} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}