Aromātai
\frac{1}{72}\approx 0.013888889
Tauwehe
\frac{1}{2 ^ {3} \cdot 3 ^ {2}} = 0.013888888888888888
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{1}{2}+\frac{2}{3}-1\right)\left(2+\frac{1}{3}-\frac{2\times 4+1}{4}\right)
Whakawehea te 3 ki te 3, kia riro ko 1.
\left(\frac{3}{6}+\frac{4}{6}-1\right)\left(2+\frac{1}{3}-\frac{2\times 4+1}{4}\right)
Ko te maha noa iti rawa atu o 2 me 3 ko 6. Me tahuri \frac{1}{2} me \frac{2}{3} ki te hautau me te tautūnga 6.
\left(\frac{3+4}{6}-1\right)\left(2+\frac{1}{3}-\frac{2\times 4+1}{4}\right)
Tā te mea he rite te tauraro o \frac{3}{6} me \frac{4}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\left(\frac{7}{6}-1\right)\left(2+\frac{1}{3}-\frac{2\times 4+1}{4}\right)
Tāpirihia te 3 ki te 4, ka 7.
\left(\frac{7}{6}-\frac{6}{6}\right)\left(2+\frac{1}{3}-\frac{2\times 4+1}{4}\right)
Me tahuri te 1 ki te hautau \frac{6}{6}.
\frac{7-6}{6}\left(2+\frac{1}{3}-\frac{2\times 4+1}{4}\right)
Tā te mea he rite te tauraro o \frac{7}{6} me \frac{6}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{6}\left(2+\frac{1}{3}-\frac{2\times 4+1}{4}\right)
Tangohia te 6 i te 7, ka 1.
\frac{1}{6}\left(\frac{6}{3}+\frac{1}{3}-\frac{2\times 4+1}{4}\right)
Me tahuri te 2 ki te hautau \frac{6}{3}.
\frac{1}{6}\left(\frac{6+1}{3}-\frac{2\times 4+1}{4}\right)
Tā te mea he rite te tauraro o \frac{6}{3} me \frac{1}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1}{6}\left(\frac{7}{3}-\frac{2\times 4+1}{4}\right)
Tāpirihia te 6 ki te 1, ka 7.
\frac{1}{6}\left(\frac{7}{3}-\frac{8+1}{4}\right)
Whakareatia te 2 ki te 4, ka 8.
\frac{1}{6}\left(\frac{7}{3}-\frac{9}{4}\right)
Tāpirihia te 8 ki te 1, ka 9.
\frac{1}{6}\left(\frac{28}{12}-\frac{27}{12}\right)
Ko te maha noa iti rawa atu o 3 me 4 ko 12. Me tahuri \frac{7}{3} me \frac{9}{4} ki te hautau me te tautūnga 12.
\frac{1}{6}\times \frac{28-27}{12}
Tā te mea he rite te tauraro o \frac{28}{12} me \frac{27}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{6}\times \frac{1}{12}
Tangohia te 27 i te 28, ka 1.
\frac{1\times 1}{6\times 12}
Me whakarea te \frac{1}{6} ki te \frac{1}{12} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1}{72}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 1}{6\times 12}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}