Aromātai
-\frac{17}{210}\approx -0.080952381
Tauwehe
-\frac{17}{210} = -0.08095238095238096
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{6}+\frac{2}{6}-\left(\frac{1}{5}+\frac{5}{7}\right)
Ko te maha noa iti rawa atu o 2 me 3 ko 6. Me tahuri \frac{1}{2} me \frac{1}{3} ki te hautau me te tautūnga 6.
\frac{3+2}{6}-\left(\frac{1}{5}+\frac{5}{7}\right)
Tā te mea he rite te tauraro o \frac{3}{6} me \frac{2}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{5}{6}-\left(\frac{1}{5}+\frac{5}{7}\right)
Tāpirihia te 3 ki te 2, ka 5.
\frac{5}{6}-\left(\frac{7}{35}+\frac{25}{35}\right)
Ko te maha noa iti rawa atu o 5 me 7 ko 35. Me tahuri \frac{1}{5} me \frac{5}{7} ki te hautau me te tautūnga 35.
\frac{5}{6}-\frac{7+25}{35}
Tā te mea he rite te tauraro o \frac{7}{35} me \frac{25}{35}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{5}{6}-\frac{32}{35}
Tāpirihia te 7 ki te 25, ka 32.
\frac{175}{210}-\frac{192}{210}
Ko te maha noa iti rawa atu o 6 me 35 ko 210. Me tahuri \frac{5}{6} me \frac{32}{35} ki te hautau me te tautūnga 210.
\frac{175-192}{210}
Tā te mea he rite te tauraro o \frac{175}{210} me \frac{192}{210}, me tango rāua mā te tango i ō raua taurunga.
-\frac{17}{210}
Tangohia te 192 i te 175, ka -17.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}