Aromātai
\frac{237}{2}=118.5
Tauwehe
\frac{3 \cdot 79}{2} = 118\frac{1}{2} = 118.5
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
( \frac { 1 } { 18 } ( 3 * 3 * 3 * 3 * 3 * 3 * 3 ) ) - 3
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{18}\times 3\times 3\times 3\times 3\times 3\times 3-3
Whakareatia te \frac{1}{18} ki te 3, ka \frac{3}{18}.
\frac{1}{6}\times 3\times 3\times 3\times 3\times 3\times 3-3
Whakahekea te hautanga \frac{3}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{3}{6}\times 3\times 3\times 3\times 3\times 3-3
Whakareatia te \frac{1}{6} ki te 3, ka \frac{3}{6}.
\frac{1}{2}\times 3\times 3\times 3\times 3\times 3-3
Whakahekea te hautanga \frac{3}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{3}{2}\times 3\times 3\times 3\times 3-3
Whakareatia te \frac{1}{2} ki te 3, ka \frac{3}{2}.
\frac{3\times 3}{2}\times 3\times 3\times 3-3
Tuhia te \frac{3}{2}\times 3 hei hautanga kotahi.
\frac{9}{2}\times 3\times 3\times 3-3
Whakareatia te 3 ki te 3, ka 9.
\frac{9\times 3}{2}\times 3\times 3-3
Tuhia te \frac{9}{2}\times 3 hei hautanga kotahi.
\frac{27}{2}\times 3\times 3-3
Whakareatia te 9 ki te 3, ka 27.
\frac{27\times 3}{2}\times 3-3
Tuhia te \frac{27}{2}\times 3 hei hautanga kotahi.
\frac{81}{2}\times 3-3
Whakareatia te 27 ki te 3, ka 81.
\frac{81\times 3}{2}-3
Tuhia te \frac{81}{2}\times 3 hei hautanga kotahi.
\frac{243}{2}-3
Whakareatia te 81 ki te 3, ka 243.
\frac{243}{2}-\frac{6}{2}
Me tahuri te 3 ki te hautau \frac{6}{2}.
\frac{243-6}{2}
Tā te mea he rite te tauraro o \frac{243}{2} me \frac{6}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{237}{2}
Tangohia te 6 i te 243, ka 237.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}