Aromātai
\frac{5}{16}=0.3125
Tauwehe
\frac{5}{2 ^ {4}} = 0.3125
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{4}+\frac{1}{4\times 7}+\frac{1}{7\times 10}+\frac{1}{10\times 13}+\frac{1}{13\times 16}
Whakareatia te 1 ki te 4, ka 4.
\frac{1}{4}+\frac{1}{28}+\frac{1}{7\times 10}+\frac{1}{10\times 13}+\frac{1}{13\times 16}
Whakareatia te 4 ki te 7, ka 28.
\frac{7}{28}+\frac{1}{28}+\frac{1}{7\times 10}+\frac{1}{10\times 13}+\frac{1}{13\times 16}
Ko te maha noa iti rawa atu o 4 me 28 ko 28. Me tahuri \frac{1}{4} me \frac{1}{28} ki te hautau me te tautūnga 28.
\frac{7+1}{28}+\frac{1}{7\times 10}+\frac{1}{10\times 13}+\frac{1}{13\times 16}
Tā te mea he rite te tauraro o \frac{7}{28} me \frac{1}{28}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{8}{28}+\frac{1}{7\times 10}+\frac{1}{10\times 13}+\frac{1}{13\times 16}
Tāpirihia te 7 ki te 1, ka 8.
\frac{2}{7}+\frac{1}{7\times 10}+\frac{1}{10\times 13}+\frac{1}{13\times 16}
Whakahekea te hautanga \frac{8}{28} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{2}{7}+\frac{1}{70}+\frac{1}{10\times 13}+\frac{1}{13\times 16}
Whakareatia te 7 ki te 10, ka 70.
\frac{20}{70}+\frac{1}{70}+\frac{1}{10\times 13}+\frac{1}{13\times 16}
Ko te maha noa iti rawa atu o 7 me 70 ko 70. Me tahuri \frac{2}{7} me \frac{1}{70} ki te hautau me te tautūnga 70.
\frac{20+1}{70}+\frac{1}{10\times 13}+\frac{1}{13\times 16}
Tā te mea he rite te tauraro o \frac{20}{70} me \frac{1}{70}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{21}{70}+\frac{1}{10\times 13}+\frac{1}{13\times 16}
Tāpirihia te 20 ki te 1, ka 21.
\frac{3}{10}+\frac{1}{10\times 13}+\frac{1}{13\times 16}
Whakahekea te hautanga \frac{21}{70} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
\frac{3}{10}+\frac{1}{130}+\frac{1}{13\times 16}
Whakareatia te 10 ki te 13, ka 130.
\frac{39}{130}+\frac{1}{130}+\frac{1}{13\times 16}
Ko te maha noa iti rawa atu o 10 me 130 ko 130. Me tahuri \frac{3}{10} me \frac{1}{130} ki te hautau me te tautūnga 130.
\frac{39+1}{130}+\frac{1}{13\times 16}
Tā te mea he rite te tauraro o \frac{39}{130} me \frac{1}{130}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{40}{130}+\frac{1}{13\times 16}
Tāpirihia te 39 ki te 1, ka 40.
\frac{4}{13}+\frac{1}{13\times 16}
Whakahekea te hautanga \frac{40}{130} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
\frac{4}{13}+\frac{1}{208}
Whakareatia te 13 ki te 16, ka 208.
\frac{64}{208}+\frac{1}{208}
Ko te maha noa iti rawa atu o 13 me 208 ko 208. Me tahuri \frac{4}{13} me \frac{1}{208} ki te hautau me te tautūnga 208.
\frac{64+1}{208}
Tā te mea he rite te tauraro o \frac{64}{208} me \frac{1}{208}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{65}{208}
Tāpirihia te 64 ki te 1, ka 65.
\frac{5}{16}
Whakahekea te hautanga \frac{65}{208} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 13.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}