Aromātai
\frac{281}{2730}\approx 0.102930403
Tauwehe
\frac{281}{2 \cdot 3 \cdot 5 \cdot 7 \cdot 13} = 0.10293040293040293
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{4}+\frac{1}{4\times 7}+\frac{1}{7\times 1}+\frac{1}{10\times 13}+\frac{1}{13-16}
Whakareatia te 1 ki te 4, ka 4.
\frac{1}{4}+\frac{1}{28}+\frac{1}{7\times 1}+\frac{1}{10\times 13}+\frac{1}{13-16}
Whakareatia te 4 ki te 7, ka 28.
\frac{7}{28}+\frac{1}{28}+\frac{1}{7\times 1}+\frac{1}{10\times 13}+\frac{1}{13-16}
Ko te maha noa iti rawa atu o 4 me 28 ko 28. Me tahuri \frac{1}{4} me \frac{1}{28} ki te hautau me te tautūnga 28.
\frac{7+1}{28}+\frac{1}{7\times 1}+\frac{1}{10\times 13}+\frac{1}{13-16}
Tā te mea he rite te tauraro o \frac{7}{28} me \frac{1}{28}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{8}{28}+\frac{1}{7\times 1}+\frac{1}{10\times 13}+\frac{1}{13-16}
Tāpirihia te 7 ki te 1, ka 8.
\frac{2}{7}+\frac{1}{7\times 1}+\frac{1}{10\times 13}+\frac{1}{13-16}
Whakahekea te hautanga \frac{8}{28} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{2}{7}+\frac{1}{7}+\frac{1}{10\times 13}+\frac{1}{13-16}
Whakareatia te 7 ki te 1, ka 7.
\frac{2+1}{7}+\frac{1}{10\times 13}+\frac{1}{13-16}
Tā te mea he rite te tauraro o \frac{2}{7} me \frac{1}{7}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3}{7}+\frac{1}{10\times 13}+\frac{1}{13-16}
Tāpirihia te 2 ki te 1, ka 3.
\frac{3}{7}+\frac{1}{130}+\frac{1}{13-16}
Whakareatia te 10 ki te 13, ka 130.
\frac{390}{910}+\frac{7}{910}+\frac{1}{13-16}
Ko te maha noa iti rawa atu o 7 me 130 ko 910. Me tahuri \frac{3}{7} me \frac{1}{130} ki te hautau me te tautūnga 910.
\frac{390+7}{910}+\frac{1}{13-16}
Tā te mea he rite te tauraro o \frac{390}{910} me \frac{7}{910}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{397}{910}+\frac{1}{13-16}
Tāpirihia te 390 ki te 7, ka 397.
\frac{397}{910}+\frac{1}{-3}
Tangohia te 16 i te 13, ka -3.
\frac{397}{910}-\frac{1}{3}
Ka taea te hautanga \frac{1}{-3} te tuhi anō ko -\frac{1}{3} mā te tango i te tohu tōraro.
\frac{1191}{2730}-\frac{910}{2730}
Ko te maha noa iti rawa atu o 910 me 3 ko 2730. Me tahuri \frac{397}{910} me \frac{1}{3} ki te hautau me te tautūnga 2730.
\frac{1191-910}{2730}
Tā te mea he rite te tauraro o \frac{1191}{2730} me \frac{910}{2730}, me tango rāua mā te tango i ō raua taurunga.
\frac{281}{2730}
Tangohia te 910 i te 1191, ka 281.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}