Aromātai
\frac{1}{x}
Whakaroha
\frac{1}{x}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{1}{1+x}+\frac{2x}{\left(x-1\right)\left(-x-1\right)}\right)\left(\frac{1}{x}-1\right)
Tauwehea te 1-x^{2}.
\left(\frac{x-1}{\left(x-1\right)\left(x+1\right)}+\frac{-2x}{\left(x-1\right)\left(x+1\right)}\right)\left(\frac{1}{x}-1\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 1+x me \left(x-1\right)\left(-x-1\right) ko \left(x-1\right)\left(x+1\right). Whakareatia \frac{1}{1+x} ki te \frac{x-1}{x-1}. Whakareatia \frac{2x}{\left(x-1\right)\left(-x-1\right)} ki te \frac{-1}{-1}.
\frac{x-1-2x}{\left(x-1\right)\left(x+1\right)}\left(\frac{1}{x}-1\right)
Tā te mea he rite te tauraro o \frac{x-1}{\left(x-1\right)\left(x+1\right)} me \frac{-2x}{\left(x-1\right)\left(x+1\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-x-1}{\left(x-1\right)\left(x+1\right)}\left(\frac{1}{x}-1\right)
Whakakotahitia ngā kupu rite i x-1-2x.
\frac{-\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\left(\frac{1}{x}-1\right)
Unuhia te tohu tōraro i roto o -x-1.
\frac{-1}{x-1}\left(\frac{1}{x}-1\right)
Me whakakore tahi te x+1 i te taurunga me te tauraro.
\frac{-1}{x-1}\left(\frac{1}{x}-\frac{x}{x}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{x}{x}.
\frac{-1}{x-1}\times \frac{1-x}{x}
Tā te mea he rite te tauraro o \frac{1}{x} me \frac{x}{x}, me tango rāua mā te tango i ō raua taurunga.
\frac{-\left(1-x\right)}{\left(x-1\right)x}
Me whakarea te \frac{-1}{x-1} ki te \frac{1-x}{x} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-\left(-1\right)\left(x-1\right)}{x\left(x-1\right)}
Unuhia te tohu tōraro i roto o 1-x.
\frac{-\left(-1\right)}{x}
Me whakakore tahi te x-1 i te taurunga me te tauraro.
\frac{1}{x}
Whakareatia te -1 ki te -1, ka 1.
\left(\frac{1}{1+x}+\frac{2x}{\left(x-1\right)\left(-x-1\right)}\right)\left(\frac{1}{x}-1\right)
Tauwehea te 1-x^{2}.
\left(\frac{x-1}{\left(x-1\right)\left(x+1\right)}+\frac{-2x}{\left(x-1\right)\left(x+1\right)}\right)\left(\frac{1}{x}-1\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 1+x me \left(x-1\right)\left(-x-1\right) ko \left(x-1\right)\left(x+1\right). Whakareatia \frac{1}{1+x} ki te \frac{x-1}{x-1}. Whakareatia \frac{2x}{\left(x-1\right)\left(-x-1\right)} ki te \frac{-1}{-1}.
\frac{x-1-2x}{\left(x-1\right)\left(x+1\right)}\left(\frac{1}{x}-1\right)
Tā te mea he rite te tauraro o \frac{x-1}{\left(x-1\right)\left(x+1\right)} me \frac{-2x}{\left(x-1\right)\left(x+1\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-x-1}{\left(x-1\right)\left(x+1\right)}\left(\frac{1}{x}-1\right)
Whakakotahitia ngā kupu rite i x-1-2x.
\frac{-\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\left(\frac{1}{x}-1\right)
Unuhia te tohu tōraro i roto o -x-1.
\frac{-1}{x-1}\left(\frac{1}{x}-1\right)
Me whakakore tahi te x+1 i te taurunga me te tauraro.
\frac{-1}{x-1}\left(\frac{1}{x}-\frac{x}{x}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{x}{x}.
\frac{-1}{x-1}\times \frac{1-x}{x}
Tā te mea he rite te tauraro o \frac{1}{x} me \frac{x}{x}, me tango rāua mā te tango i ō raua taurunga.
\frac{-\left(1-x\right)}{\left(x-1\right)x}
Me whakarea te \frac{-1}{x-1} ki te \frac{1-x}{x} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-\left(-1\right)\left(x-1\right)}{x\left(x-1\right)}
Unuhia te tohu tōraro i roto o 1-x.
\frac{-\left(-1\right)}{x}
Me whakakore tahi te x-1 i te taurunga me te tauraro.
\frac{1}{x}
Whakareatia te -1 ki te -1, ka 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}