Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

8\times \frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\sqrt{2}\times \frac{2}{3}\times \frac{1}{2}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
8\times \frac{\sqrt{2}}{2}\sqrt{2}\times \frac{2}{3}\times \frac{1}{2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{8\times 2}{3}\times \frac{\sqrt{2}}{2}\sqrt{2}\times \frac{1}{2}
Tuhia te 8\times \frac{2}{3} hei hautanga kotahi.
\frac{16}{3}\times \frac{\sqrt{2}}{2}\sqrt{2}\times \frac{1}{2}
Whakareatia te 8 ki te 2, ka 16.
\frac{16\times 1}{3\times 2}\times \frac{\sqrt{2}}{2}\sqrt{2}
Me whakarea te \frac{16}{3} ki te \frac{1}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{16}{6}\times \frac{\sqrt{2}}{2}\sqrt{2}
Mahia ngā whakarea i roto i te hautanga \frac{16\times 1}{3\times 2}.
\frac{8}{3}\times \frac{\sqrt{2}}{2}\sqrt{2}
Whakahekea te hautanga \frac{16}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{8\sqrt{2}}{3\times 2}\sqrt{2}
Me whakarea te \frac{8}{3} ki te \frac{\sqrt{2}}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{4\sqrt{2}}{3}\sqrt{2}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{4\sqrt{2}\sqrt{2}}{3}
Tuhia te \frac{4\sqrt{2}}{3}\sqrt{2} hei hautanga kotahi.
\frac{4\times 2}{3}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
\frac{8}{3}
Whakareatia te 4 ki te 2, ka 8.