Aromātai
\frac{8}{3}\approx 2.666666667
Tauwehe
\frac{2 ^ {3}}{3} = 2\frac{2}{3} = 2.6666666666666665
Tohaina
Kua tāruatia ki te papatopenga
8\times \frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\sqrt{2}\times \frac{2}{3}\times \frac{1}{2}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
8\times \frac{\sqrt{2}}{2}\sqrt{2}\times \frac{2}{3}\times \frac{1}{2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{8\times 2}{3}\times \frac{\sqrt{2}}{2}\sqrt{2}\times \frac{1}{2}
Tuhia te 8\times \frac{2}{3} hei hautanga kotahi.
\frac{16}{3}\times \frac{\sqrt{2}}{2}\sqrt{2}\times \frac{1}{2}
Whakareatia te 8 ki te 2, ka 16.
\frac{16\times 1}{3\times 2}\times \frac{\sqrt{2}}{2}\sqrt{2}
Me whakarea te \frac{16}{3} ki te \frac{1}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{16}{6}\times \frac{\sqrt{2}}{2}\sqrt{2}
Mahia ngā whakarea i roto i te hautanga \frac{16\times 1}{3\times 2}.
\frac{8}{3}\times \frac{\sqrt{2}}{2}\sqrt{2}
Whakahekea te hautanga \frac{16}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{8\sqrt{2}}{3\times 2}\sqrt{2}
Me whakarea te \frac{8}{3} ki te \frac{\sqrt{2}}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{4\sqrt{2}}{3}\sqrt{2}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{4\sqrt{2}\sqrt{2}}{3}
Tuhia te \frac{4\sqrt{2}}{3}\sqrt{2} hei hautanga kotahi.
\frac{4\times 2}{3}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
\frac{8}{3}
Whakareatia te 4 ki te 2, ka 8.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}