Whakaoti mō x
x=\frac{20}{3}-y
Whakaoti mō y
y=\frac{20}{3}-x
Graph
Tohaina
Kua tāruatia ki te papatopenga
-x+3y=20-4x
Whakareatia ngā taha e rua o te whārite ki te 2.
-x+3y+4x=20
Me tāpiri te 4x ki ngā taha e rua.
-x+4x=20-3y
Tangohia te 3y mai i ngā taha e rua.
3x=20-3y
Pahekotia te -x me 4x, ka 3x.
\frac{3x}{3}=\frac{20-3y}{3}
Whakawehea ngā taha e rua ki te 3.
x=\frac{20-3y}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x=\frac{20}{3}-y
Whakawehe 20-3y ki te 3.
-x+3y=20-4x
Whakareatia ngā taha e rua o te whārite ki te 2.
3y=20-4x+x
Me tāpiri te x ki ngā taha e rua.
3y=20-3x
Pahekotia te -4x me x, ka -3x.
\frac{3y}{3}=\frac{20-3x}{3}
Whakawehea ngā taha e rua ki te 3.
y=\frac{20-3x}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
y=\frac{20}{3}-x
Whakawehe -3x+20 ki te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}