Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(-9k^{2}\right)^{2}}{\left(4k^{2}+3\right)^{2}}-4\times \frac{-6k}{4k^{2}+3}
Kia whakarewa i te \frac{-9k^{2}}{4k^{2}+3} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(-9k^{2}\right)^{2}}{\left(4k^{2}+3\right)^{2}}-\frac{4\left(-6\right)k}{4k^{2}+3}
Tuhia te 4\times \frac{-6k}{4k^{2}+3} hei hautanga kotahi.
\frac{\left(-9k^{2}\right)^{2}}{\left(4k^{2}+3\right)^{2}}-\frac{-24k}{4k^{2}+3}
Whakareatia te 4 ki te -6, ka -24.
\frac{\left(-9k^{2}\right)^{2}}{\left(4k^{2}+3\right)^{2}}-\frac{-24k\left(4k^{2}+3\right)}{\left(4k^{2}+3\right)^{2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(4k^{2}+3\right)^{2} me 4k^{2}+3 ko \left(4k^{2}+3\right)^{2}. Whakareatia \frac{-24k}{4k^{2}+3} ki te \frac{4k^{2}+3}{4k^{2}+3}.
\frac{\left(-9k^{2}\right)^{2}-\left(-24k\left(4k^{2}+3\right)\right)}{\left(4k^{2}+3\right)^{2}}
Tā te mea he rite te tauraro o \frac{\left(-9k^{2}\right)^{2}}{\left(4k^{2}+3\right)^{2}} me \frac{-24k\left(4k^{2}+3\right)}{\left(4k^{2}+3\right)^{2}}, me tango rāua mā te tango i ō raua taurunga.
\frac{\left(-9\right)^{2}\left(k^{2}\right)^{2}}{\left(4k^{2}+3\right)^{2}}-\frac{-24k}{4k^{2}+3}
Whakarohaina te \left(-9k^{2}\right)^{2}.
\frac{\left(-9\right)^{2}k^{4}}{\left(4k^{2}+3\right)^{2}}-\frac{-24k}{4k^{2}+3}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
\frac{81k^{4}}{\left(4k^{2}+3\right)^{2}}-\frac{-24k}{4k^{2}+3}
Tātaihia te -9 mā te pū o 2, kia riro ko 81.
\frac{81k^{4}}{\left(4k^{2}+3\right)^{2}}-\frac{-24k\left(4k^{2}+3\right)}{\left(4k^{2}+3\right)^{2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(4k^{2}+3\right)^{2} me 4k^{2}+3 ko \left(4k^{2}+3\right)^{2}. Whakareatia \frac{-24k}{4k^{2}+3} ki te \frac{4k^{2}+3}{4k^{2}+3}.
\frac{81k^{4}-\left(-24k\left(4k^{2}+3\right)\right)}{\left(4k^{2}+3\right)^{2}}
Tā te mea he rite te tauraro o \frac{81k^{4}}{\left(4k^{2}+3\right)^{2}} me \frac{-24k\left(4k^{2}+3\right)}{\left(4k^{2}+3\right)^{2}}, me tango rāua mā te tango i ō raua taurunga.
\frac{81k^{4}+96k^{3}+72k}{\left(4k^{2}+3\right)^{2}}
Mahia ngā whakarea i roto o 81k^{4}-\left(-24k\left(4k^{2}+3\right)\right).
\frac{81k^{4}+96k^{3}+72k}{16k^{4}+24k^{2}+9}
Whakarohaina te \left(4k^{2}+3\right)^{2}.
\frac{\left(-9k^{2}\right)^{2}}{\left(4k^{2}+3\right)^{2}}-4\times \frac{-6k}{4k^{2}+3}
Kia whakarewa i te \frac{-9k^{2}}{4k^{2}+3} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(-9k^{2}\right)^{2}}{\left(4k^{2}+3\right)^{2}}-\frac{4\left(-6\right)k}{4k^{2}+3}
Tuhia te 4\times \frac{-6k}{4k^{2}+3} hei hautanga kotahi.
\frac{\left(-9k^{2}\right)^{2}}{\left(4k^{2}+3\right)^{2}}-\frac{-24k}{4k^{2}+3}
Whakareatia te 4 ki te -6, ka -24.
\frac{\left(-9k^{2}\right)^{2}}{\left(4k^{2}+3\right)^{2}}-\frac{-24k\left(4k^{2}+3\right)}{\left(4k^{2}+3\right)^{2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(4k^{2}+3\right)^{2} me 4k^{2}+3 ko \left(4k^{2}+3\right)^{2}. Whakareatia \frac{-24k}{4k^{2}+3} ki te \frac{4k^{2}+3}{4k^{2}+3}.
\frac{\left(-9k^{2}\right)^{2}-\left(-24k\left(4k^{2}+3\right)\right)}{\left(4k^{2}+3\right)^{2}}
Tā te mea he rite te tauraro o \frac{\left(-9k^{2}\right)^{2}}{\left(4k^{2}+3\right)^{2}} me \frac{-24k\left(4k^{2}+3\right)}{\left(4k^{2}+3\right)^{2}}, me tango rāua mā te tango i ō raua taurunga.
\frac{\left(-9\right)^{2}\left(k^{2}\right)^{2}}{\left(4k^{2}+3\right)^{2}}-\frac{-24k}{4k^{2}+3}
Whakarohaina te \left(-9k^{2}\right)^{2}.
\frac{\left(-9\right)^{2}k^{4}}{\left(4k^{2}+3\right)^{2}}-\frac{-24k}{4k^{2}+3}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
\frac{81k^{4}}{\left(4k^{2}+3\right)^{2}}-\frac{-24k}{4k^{2}+3}
Tātaihia te -9 mā te pū o 2, kia riro ko 81.
\frac{81k^{4}}{\left(4k^{2}+3\right)^{2}}-\frac{-24k\left(4k^{2}+3\right)}{\left(4k^{2}+3\right)^{2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(4k^{2}+3\right)^{2} me 4k^{2}+3 ko \left(4k^{2}+3\right)^{2}. Whakareatia \frac{-24k}{4k^{2}+3} ki te \frac{4k^{2}+3}{4k^{2}+3}.
\frac{81k^{4}-\left(-24k\left(4k^{2}+3\right)\right)}{\left(4k^{2}+3\right)^{2}}
Tā te mea he rite te tauraro o \frac{81k^{4}}{\left(4k^{2}+3\right)^{2}} me \frac{-24k\left(4k^{2}+3\right)}{\left(4k^{2}+3\right)^{2}}, me tango rāua mā te tango i ō raua taurunga.
\frac{81k^{4}+96k^{3}+72k}{\left(4k^{2}+3\right)^{2}}
Mahia ngā whakarea i roto o 81k^{4}-\left(-24k\left(4k^{2}+3\right)\right).
\frac{81k^{4}+96k^{3}+72k}{16k^{4}+24k^{2}+9}
Whakarohaina te \left(4k^{2}+3\right)^{2}.