Aromātai
\frac{x+5}{x-2}
Whakaroha
\frac{x+5}{x-2}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(-5x-25\right)\left(x^{2}-5x\right)}{\left(5x-x^{2}\right)\left(5x-10\right)}
Me whakarea te \frac{-5x-25}{5x-x^{2}} ki te \frac{x^{2}-5x}{5x-10} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-\left(-5x-25\right)\left(-x^{2}+5x\right)}{\left(5x-10\right)\left(-x^{2}+5x\right)}
Unuhia te tohu tōraro i roto o x^{2}-5x.
\frac{-\left(-5x-25\right)}{5x-10}
Me whakakore tahi te -x^{2}+5x i te taurunga me te tauraro.
\frac{-5\left(-x-5\right)}{5\left(x-2\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{-\left(-x-5\right)}{x-2}
Me whakakore tahi te 5 i te taurunga me te tauraro.
\frac{x+5}{x-2}
Me whakaroha te kīanga.
\frac{\left(-5x-25\right)\left(x^{2}-5x\right)}{\left(5x-x^{2}\right)\left(5x-10\right)}
Me whakarea te \frac{-5x-25}{5x-x^{2}} ki te \frac{x^{2}-5x}{5x-10} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-\left(-5x-25\right)\left(-x^{2}+5x\right)}{\left(5x-10\right)\left(-x^{2}+5x\right)}
Unuhia te tohu tōraro i roto o x^{2}-5x.
\frac{-\left(-5x-25\right)}{5x-10}
Me whakakore tahi te -x^{2}+5x i te taurunga me te tauraro.
\frac{-5\left(-x-5\right)}{5\left(x-2\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{-\left(-x-5\right)}{x-2}
Me whakakore tahi te 5 i te taurunga me te tauraro.
\frac{x+5}{x-2}
Me whakaroha te kīanga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}