Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\frac{-4y^{-2}x^{5}}{5y^{4}}\right)^{-4}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\left(\frac{-4x^{5}}{5y^{6}}\right)^{-4}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
\frac{\left(-4x^{5}\right)^{-4}}{\left(5y^{6}\right)^{-4}}
Kia whakarewa i te \frac{-4x^{5}}{5y^{6}} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(-4\right)^{-4}\left(x^{5}\right)^{-4}}{\left(5y^{6}\right)^{-4}}
Whakarohaina te \left(-4x^{5}\right)^{-4}.
\frac{\left(-4\right)^{-4}x^{-20}}{\left(5y^{6}\right)^{-4}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 5 me te -4 kia riro ai te -20.
\frac{\frac{1}{256}x^{-20}}{\left(5y^{6}\right)^{-4}}
Tātaihia te -4 mā te pū o -4, kia riro ko \frac{1}{256}.
\frac{\frac{1}{256}x^{-20}}{5^{-4}\left(y^{6}\right)^{-4}}
Whakarohaina te \left(5y^{6}\right)^{-4}.
\frac{\frac{1}{256}x^{-20}}{5^{-4}y^{-24}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 6 me te -4 kia riro ai te -24.
\frac{\frac{1}{256}x^{-20}}{\frac{1}{625}y^{-24}}
Tātaihia te 5 mā te pū o -4, kia riro ko \frac{1}{625}.
\left(\frac{-4y^{-2}x^{5}}{5y^{4}}\right)^{-4}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\left(\frac{-4x^{5}}{5y^{6}}\right)^{-4}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
\frac{\left(-4x^{5}\right)^{-4}}{\left(5y^{6}\right)^{-4}}
Kia whakarewa i te \frac{-4x^{5}}{5y^{6}} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(-4\right)^{-4}\left(x^{5}\right)^{-4}}{\left(5y^{6}\right)^{-4}}
Whakarohaina te \left(-4x^{5}\right)^{-4}.
\frac{\left(-4\right)^{-4}x^{-20}}{\left(5y^{6}\right)^{-4}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 5 me te -4 kia riro ai te -20.
\frac{\frac{1}{256}x^{-20}}{\left(5y^{6}\right)^{-4}}
Tātaihia te -4 mā te pū o -4, kia riro ko \frac{1}{256}.
\frac{\frac{1}{256}x^{-20}}{5^{-4}\left(y^{6}\right)^{-4}}
Whakarohaina te \left(5y^{6}\right)^{-4}.
\frac{\frac{1}{256}x^{-20}}{5^{-4}y^{-24}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 6 me te -4 kia riro ai te -24.
\frac{\frac{1}{256}x^{-20}}{\frac{1}{625}y^{-24}}
Tātaihia te 5 mā te pū o -4, kia riro ko \frac{1}{625}.