Aromātai
\frac{625y^{24}}{256x^{20}}
Whakaroha
\frac{625y^{24}}{256x^{20}}
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{-4y^{-2}x^{5}}{5y^{4}}\right)^{-4}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\left(\frac{-4x^{5}}{5y^{6}}\right)^{-4}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
\frac{\left(-4x^{5}\right)^{-4}}{\left(5y^{6}\right)^{-4}}
Kia whakarewa i te \frac{-4x^{5}}{5y^{6}} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(-4\right)^{-4}\left(x^{5}\right)^{-4}}{\left(5y^{6}\right)^{-4}}
Whakarohaina te \left(-4x^{5}\right)^{-4}.
\frac{\left(-4\right)^{-4}x^{-20}}{\left(5y^{6}\right)^{-4}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 5 me te -4 kia riro ai te -20.
\frac{\frac{1}{256}x^{-20}}{\left(5y^{6}\right)^{-4}}
Tātaihia te -4 mā te pū o -4, kia riro ko \frac{1}{256}.
\frac{\frac{1}{256}x^{-20}}{5^{-4}\left(y^{6}\right)^{-4}}
Whakarohaina te \left(5y^{6}\right)^{-4}.
\frac{\frac{1}{256}x^{-20}}{5^{-4}y^{-24}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 6 me te -4 kia riro ai te -24.
\frac{\frac{1}{256}x^{-20}}{\frac{1}{625}y^{-24}}
Tātaihia te 5 mā te pū o -4, kia riro ko \frac{1}{625}.
\left(\frac{-4y^{-2}x^{5}}{5y^{4}}\right)^{-4}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\left(\frac{-4x^{5}}{5y^{6}}\right)^{-4}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
\frac{\left(-4x^{5}\right)^{-4}}{\left(5y^{6}\right)^{-4}}
Kia whakarewa i te \frac{-4x^{5}}{5y^{6}} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(-4\right)^{-4}\left(x^{5}\right)^{-4}}{\left(5y^{6}\right)^{-4}}
Whakarohaina te \left(-4x^{5}\right)^{-4}.
\frac{\left(-4\right)^{-4}x^{-20}}{\left(5y^{6}\right)^{-4}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 5 me te -4 kia riro ai te -20.
\frac{\frac{1}{256}x^{-20}}{\left(5y^{6}\right)^{-4}}
Tātaihia te -4 mā te pū o -4, kia riro ko \frac{1}{256}.
\frac{\frac{1}{256}x^{-20}}{5^{-4}\left(y^{6}\right)^{-4}}
Whakarohaina te \left(5y^{6}\right)^{-4}.
\frac{\frac{1}{256}x^{-20}}{5^{-4}y^{-24}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 6 me te -4 kia riro ai te -24.
\frac{\frac{1}{256}x^{-20}}{\frac{1}{625}y^{-24}}
Tātaihia te 5 mā te pū o -4, kia riro ko \frac{1}{625}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}