Aromātai
\frac{-a^{3}+3a^{2}-10}{\left(a-2\right)^{2}}
Whakaroha
\frac{-a^{3}+3a^{2}-10}{\left(a-2\right)^{2}}
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{-3}{a+1}-\frac{a\left(a+1\right)}{a+1}+1\right)\times \frac{a+1}{\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Whakawehea te a+1 ki te a+1, kia riro ko 1.
\left(\frac{-3}{a+1}-a+1\right)\times \frac{a+1}{\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Me whakakore tahi te a+1 i te taurunga me te tauraro.
\left(\frac{-3}{a+1}+\frac{\left(-a+1\right)\left(a+1\right)}{a+1}\right)\times \frac{a+1}{\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia -a+1 ki te \frac{a+1}{a+1}.
\frac{-3+\left(-a+1\right)\left(a+1\right)}{a+1}\times \frac{a+1}{\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Tā te mea he rite te tauraro o \frac{-3}{a+1} me \frac{\left(-a+1\right)\left(a+1\right)}{a+1}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-3-a^{2}-a+a+1}{a+1}\times \frac{a+1}{\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Mahia ngā whakarea i roto o -3+\left(-a+1\right)\left(a+1\right).
\frac{-2-a^{2}}{a+1}\times \frac{a+1}{\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Whakakotahitia ngā kupu rite i -3-a^{2}-a+a+1.
\frac{\left(-2-a^{2}\right)\left(a+1\right)}{\left(a+1\right)\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Me whakarea te \frac{-2-a^{2}}{a+1} ki te \frac{a+1}{\left(a-2\right)^{2}} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-a^{2}-2}{\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Me whakakore tahi te a+1 i te taurunga me te tauraro.
\frac{-a^{2}-2}{\left(a-2\right)^{2}}+\frac{4\left(a-2\right)}{\left(a-2\right)^{2}}-a
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(a-2\right)^{2} me a-2 ko \left(a-2\right)^{2}. Whakareatia \frac{4}{a-2} ki te \frac{a-2}{a-2}.
\frac{-a^{2}-2+4\left(a-2\right)}{\left(a-2\right)^{2}}-a
Tā te mea he rite te tauraro o \frac{-a^{2}-2}{\left(a-2\right)^{2}} me \frac{4\left(a-2\right)}{\left(a-2\right)^{2}}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-a^{2}-2+4a-8}{\left(a-2\right)^{2}}-a
Mahia ngā whakarea i roto o -a^{2}-2+4\left(a-2\right).
\frac{-a^{2}-10+4a}{\left(a-2\right)^{2}}-a
Whakakotahitia ngā kupu rite i -a^{2}-2+4a-8.
\frac{-a^{2}-10+4a}{\left(a-2\right)^{2}}-\frac{a\left(a-2\right)^{2}}{\left(a-2\right)^{2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia a ki te \frac{\left(a-2\right)^{2}}{\left(a-2\right)^{2}}.
\frac{-a^{2}-10+4a-a\left(a-2\right)^{2}}{\left(a-2\right)^{2}}
Tā te mea he rite te tauraro o \frac{-a^{2}-10+4a}{\left(a-2\right)^{2}} me \frac{a\left(a-2\right)^{2}}{\left(a-2\right)^{2}}, me tango rāua mā te tango i ō raua taurunga.
\frac{-a^{2}-10+4a-a^{3}+4a^{2}-4a}{\left(a-2\right)^{2}}
Mahia ngā whakarea i roto o -a^{2}-10+4a-a\left(a-2\right)^{2}.
\frac{3a^{2}-10-a^{3}}{\left(a-2\right)^{2}}
Whakakotahitia ngā kupu rite i -a^{2}-10+4a-a^{3}+4a^{2}-4a.
\frac{3a^{2}-10-a^{3}}{a^{2}-4a+4}
Whakarohaina te \left(a-2\right)^{2}.
\left(\frac{-3}{a+1}-\frac{a\left(a+1\right)}{a+1}+1\right)\times \frac{a+1}{\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Whakawehea te a+1 ki te a+1, kia riro ko 1.
\left(\frac{-3}{a+1}-a+1\right)\times \frac{a+1}{\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Me whakakore tahi te a+1 i te taurunga me te tauraro.
\left(\frac{-3}{a+1}+\frac{\left(-a+1\right)\left(a+1\right)}{a+1}\right)\times \frac{a+1}{\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia -a+1 ki te \frac{a+1}{a+1}.
\frac{-3+\left(-a+1\right)\left(a+1\right)}{a+1}\times \frac{a+1}{\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Tā te mea he rite te tauraro o \frac{-3}{a+1} me \frac{\left(-a+1\right)\left(a+1\right)}{a+1}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-3-a^{2}-a+a+1}{a+1}\times \frac{a+1}{\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Mahia ngā whakarea i roto o -3+\left(-a+1\right)\left(a+1\right).
\frac{-2-a^{2}}{a+1}\times \frac{a+1}{\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Whakakotahitia ngā kupu rite i -3-a^{2}-a+a+1.
\frac{\left(-2-a^{2}\right)\left(a+1\right)}{\left(a+1\right)\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Me whakarea te \frac{-2-a^{2}}{a+1} ki te \frac{a+1}{\left(a-2\right)^{2}} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-a^{2}-2}{\left(a-2\right)^{2}}+\frac{4}{a-2}-a
Me whakakore tahi te a+1 i te taurunga me te tauraro.
\frac{-a^{2}-2}{\left(a-2\right)^{2}}+\frac{4\left(a-2\right)}{\left(a-2\right)^{2}}-a
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(a-2\right)^{2} me a-2 ko \left(a-2\right)^{2}. Whakareatia \frac{4}{a-2} ki te \frac{a-2}{a-2}.
\frac{-a^{2}-2+4\left(a-2\right)}{\left(a-2\right)^{2}}-a
Tā te mea he rite te tauraro o \frac{-a^{2}-2}{\left(a-2\right)^{2}} me \frac{4\left(a-2\right)}{\left(a-2\right)^{2}}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-a^{2}-2+4a-8}{\left(a-2\right)^{2}}-a
Mahia ngā whakarea i roto o -a^{2}-2+4\left(a-2\right).
\frac{-a^{2}-10+4a}{\left(a-2\right)^{2}}-a
Whakakotahitia ngā kupu rite i -a^{2}-2+4a-8.
\frac{-a^{2}-10+4a}{\left(a-2\right)^{2}}-\frac{a\left(a-2\right)^{2}}{\left(a-2\right)^{2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia a ki te \frac{\left(a-2\right)^{2}}{\left(a-2\right)^{2}}.
\frac{-a^{2}-10+4a-a\left(a-2\right)^{2}}{\left(a-2\right)^{2}}
Tā te mea he rite te tauraro o \frac{-a^{2}-10+4a}{\left(a-2\right)^{2}} me \frac{a\left(a-2\right)^{2}}{\left(a-2\right)^{2}}, me tango rāua mā te tango i ō raua taurunga.
\frac{-a^{2}-10+4a-a^{3}+4a^{2}-4a}{\left(a-2\right)^{2}}
Mahia ngā whakarea i roto o -a^{2}-10+4a-a\left(a-2\right)^{2}.
\frac{3a^{2}-10-a^{3}}{\left(a-2\right)^{2}}
Whakakotahitia ngā kupu rite i -a^{2}-10+4a-a^{3}+4a^{2}-4a.
\frac{3a^{2}-10-a^{3}}{a^{2}-4a+4}
Whakarohaina te \left(a-2\right)^{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}