Aromātai
-\frac{3b^{17}a^{18}}{2}
Whakaroha
-\frac{3b^{17}a^{18}}{2}
Tohaina
Kua tāruatia ki te papatopenga
\left(-\frac{3}{2}a^{3}b^{2}\right)^{4}\left(-\frac{2}{3}a^{2}b^{3}\right)^{3}
Ka taea te hautanga \frac{-3}{2} te tuhi anō ko -\frac{3}{2} mā te tango i te tohu tōraro.
\left(-\frac{3}{2}\right)^{4}\left(a^{3}\right)^{4}\left(b^{2}\right)^{4}\left(-\frac{2}{3}a^{2}b^{3}\right)^{3}
Whakarohaina te \left(-\frac{3}{2}a^{3}b^{2}\right)^{4}.
\left(-\frac{3}{2}\right)^{4}a^{12}\left(b^{2}\right)^{4}\left(-\frac{2}{3}a^{2}b^{3}\right)^{3}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te 4 kia riro ai te 12.
\left(-\frac{3}{2}\right)^{4}a^{12}b^{8}\left(-\frac{2}{3}a^{2}b^{3}\right)^{3}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 4 kia riro ai te 8.
\frac{81}{16}a^{12}b^{8}\left(-\frac{2}{3}a^{2}b^{3}\right)^{3}
Tātaihia te -\frac{3}{2} mā te pū o 4, kia riro ko \frac{81}{16}.
\frac{81}{16}a^{12}b^{8}\left(-\frac{2}{3}\right)^{3}\left(a^{2}\right)^{3}\left(b^{3}\right)^{3}
Whakarohaina te \left(-\frac{2}{3}a^{2}b^{3}\right)^{3}.
\frac{81}{16}a^{12}b^{8}\left(-\frac{2}{3}\right)^{3}a^{6}\left(b^{3}\right)^{3}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 3 kia riro ai te 6.
\frac{81}{16}a^{12}b^{8}\left(-\frac{2}{3}\right)^{3}a^{6}b^{9}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te 3 kia riro ai te 9.
\frac{81}{16}a^{12}b^{8}\left(-\frac{8}{27}\right)a^{6}b^{9}
Tātaihia te -\frac{2}{3} mā te pū o 3, kia riro ko -\frac{8}{27}.
-\frac{3}{2}a^{12}b^{8}a^{6}b^{9}
Whakareatia te \frac{81}{16} ki te -\frac{8}{27}, ka -\frac{3}{2}.
-\frac{3}{2}a^{18}b^{8}b^{9}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 12 me te 6 kia riro ai te 18.
-\frac{3}{2}a^{18}b^{17}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 8 me te 9 kia riro ai te 17.
\left(-\frac{3}{2}a^{3}b^{2}\right)^{4}\left(-\frac{2}{3}a^{2}b^{3}\right)^{3}
Ka taea te hautanga \frac{-3}{2} te tuhi anō ko -\frac{3}{2} mā te tango i te tohu tōraro.
\left(-\frac{3}{2}\right)^{4}\left(a^{3}\right)^{4}\left(b^{2}\right)^{4}\left(-\frac{2}{3}a^{2}b^{3}\right)^{3}
Whakarohaina te \left(-\frac{3}{2}a^{3}b^{2}\right)^{4}.
\left(-\frac{3}{2}\right)^{4}a^{12}\left(b^{2}\right)^{4}\left(-\frac{2}{3}a^{2}b^{3}\right)^{3}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te 4 kia riro ai te 12.
\left(-\frac{3}{2}\right)^{4}a^{12}b^{8}\left(-\frac{2}{3}a^{2}b^{3}\right)^{3}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 4 kia riro ai te 8.
\frac{81}{16}a^{12}b^{8}\left(-\frac{2}{3}a^{2}b^{3}\right)^{3}
Tātaihia te -\frac{3}{2} mā te pū o 4, kia riro ko \frac{81}{16}.
\frac{81}{16}a^{12}b^{8}\left(-\frac{2}{3}\right)^{3}\left(a^{2}\right)^{3}\left(b^{3}\right)^{3}
Whakarohaina te \left(-\frac{2}{3}a^{2}b^{3}\right)^{3}.
\frac{81}{16}a^{12}b^{8}\left(-\frac{2}{3}\right)^{3}a^{6}\left(b^{3}\right)^{3}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 3 kia riro ai te 6.
\frac{81}{16}a^{12}b^{8}\left(-\frac{2}{3}\right)^{3}a^{6}b^{9}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te 3 kia riro ai te 9.
\frac{81}{16}a^{12}b^{8}\left(-\frac{8}{27}\right)a^{6}b^{9}
Tātaihia te -\frac{2}{3} mā te pū o 3, kia riro ko -\frac{8}{27}.
-\frac{3}{2}a^{12}b^{8}a^{6}b^{9}
Whakareatia te \frac{81}{16} ki te -\frac{8}{27}, ka -\frac{3}{2}.
-\frac{3}{2}a^{18}b^{8}b^{9}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 12 me te 6 kia riro ai te 18.
-\frac{3}{2}a^{18}b^{17}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 8 me te 9 kia riro ai te 17.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}