Aromātai
-\frac{27x^{9}}{y^{6}}
Whakaroha
-\frac{27x^{9}}{y^{6}}
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{-\frac{1}{3}x^{-3}y^{2}}{3^{0}}\right)^{-3}
Me whakakore tahi te y^{2} i te taurunga me te tauraro.
\left(\frac{-\frac{1}{3}x^{-3}y^{2}}{1}\right)^{-3}
Tātaihia te 3 mā te pū o 0, kia riro ko 1.
\left(-\frac{1}{3}x^{-3}y^{2}\right)^{-3}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
\left(-\frac{1}{3}\right)^{-3}\left(x^{-3}\right)^{-3}\left(y^{2}\right)^{-3}
Whakarohaina te \left(-\frac{1}{3}x^{-3}y^{2}\right)^{-3}.
\left(-\frac{1}{3}\right)^{-3}x^{9}\left(y^{2}\right)^{-3}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te -3 me te -3 kia riro ai te 9.
\left(-\frac{1}{3}\right)^{-3}x^{9}y^{-6}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te -3 kia riro ai te -6.
-27x^{9}y^{-6}
Tātaihia te -\frac{1}{3} mā te pū o -3, kia riro ko -27.
\left(\frac{-\frac{1}{3}x^{-3}y^{2}}{3^{0}}\right)^{-3}
Me whakakore tahi te y^{2} i te taurunga me te tauraro.
\left(\frac{-\frac{1}{3}x^{-3}y^{2}}{1}\right)^{-3}
Tātaihia te 3 mā te pū o 0, kia riro ko 1.
\left(-\frac{1}{3}x^{-3}y^{2}\right)^{-3}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
\left(-\frac{1}{3}\right)^{-3}\left(x^{-3}\right)^{-3}\left(y^{2}\right)^{-3}
Whakarohaina te \left(-\frac{1}{3}x^{-3}y^{2}\right)^{-3}.
\left(-\frac{1}{3}\right)^{-3}x^{9}\left(y^{2}\right)^{-3}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te -3 me te -3 kia riro ai te 9.
\left(-\frac{1}{3}\right)^{-3}x^{9}y^{-6}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te -3 kia riro ai te -6.
-27x^{9}y^{-6}
Tātaihia te -\frac{1}{3} mā te pū o -3, kia riro ko -27.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}