Aromātai
\frac{-\sqrt{3}i-1}{2}\approx -0.5-0.866025404i
Whakaroha
\frac{-\sqrt{3}i-1}{2}
Tohaina
Kua tāruatia ki te papatopenga
\left(-\frac{1}{2}+\frac{1}{2}i\sqrt{3}\right)^{2}
Ka taea te hautanga \frac{-1}{2} te tuhi anō ko -\frac{1}{2} mā te tango i te tohu tōraro.
\frac{1}{4}-\frac{1}{2}i\sqrt{3}-\frac{1}{4}\left(\sqrt{3}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(-\frac{1}{2}+\frac{1}{2}i\sqrt{3}\right)^{2}.
\frac{1}{4}-\frac{1}{2}i\sqrt{3}-\frac{1}{4}\times 3
Ko te pūrua o \sqrt{3} ko 3.
\frac{1}{4}-\frac{1}{2}i\sqrt{3}-\frac{3}{4}
Whakareatia te -\frac{1}{4} ki te 3, ka -\frac{3}{4}.
-\frac{1}{2}-\frac{1}{2}i\sqrt{3}
Tangohia te \frac{3}{4} i te \frac{1}{4}, ka -\frac{1}{2}.
\left(-\frac{1}{2}+\frac{1}{2}i\sqrt{3}\right)^{2}
Ka taea te hautanga \frac{-1}{2} te tuhi anō ko -\frac{1}{2} mā te tango i te tohu tōraro.
\frac{1}{4}-\frac{1}{2}i\sqrt{3}-\frac{1}{4}\left(\sqrt{3}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(-\frac{1}{2}+\frac{1}{2}i\sqrt{3}\right)^{2}.
\frac{1}{4}-\frac{1}{2}i\sqrt{3}-\frac{1}{4}\times 3
Ko te pūrua o \sqrt{3} ko 3.
\frac{1}{4}-\frac{1}{2}i\sqrt{3}-\frac{3}{4}
Whakareatia te -\frac{1}{4} ki te 3, ka -\frac{3}{4}.
-\frac{1}{2}-\frac{1}{2}i\sqrt{3}
Tangohia te \frac{3}{4} i te \frac{1}{4}, ka -\frac{1}{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}