Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(-\frac{1}{2}+\frac{1}{2}i\sqrt{3}\right)^{2}
Ka taea te hautanga \frac{-1}{2} te tuhi anō ko -\frac{1}{2} mā te tango i te tohu tōraro.
\frac{1}{4}-\frac{1}{2}i\sqrt{3}-\frac{1}{4}\left(\sqrt{3}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(-\frac{1}{2}+\frac{1}{2}i\sqrt{3}\right)^{2}.
\frac{1}{4}-\frac{1}{2}i\sqrt{3}-\frac{1}{4}\times 3
Ko te pūrua o \sqrt{3} ko 3.
\frac{1}{4}-\frac{1}{2}i\sqrt{3}-\frac{3}{4}
Whakareatia te -\frac{1}{4} ki te 3, ka -\frac{3}{4}.
-\frac{1}{2}-\frac{1}{2}i\sqrt{3}
Tangohia te \frac{3}{4} i te \frac{1}{4}, ka -\frac{1}{2}.
\left(-\frac{1}{2}+\frac{1}{2}i\sqrt{3}\right)^{2}
Ka taea te hautanga \frac{-1}{2} te tuhi anō ko -\frac{1}{2} mā te tango i te tohu tōraro.
\frac{1}{4}-\frac{1}{2}i\sqrt{3}-\frac{1}{4}\left(\sqrt{3}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(-\frac{1}{2}+\frac{1}{2}i\sqrt{3}\right)^{2}.
\frac{1}{4}-\frac{1}{2}i\sqrt{3}-\frac{1}{4}\times 3
Ko te pūrua o \sqrt{3} ko 3.
\frac{1}{4}-\frac{1}{2}i\sqrt{3}-\frac{3}{4}
Whakareatia te -\frac{1}{4} ki te 3, ka -\frac{3}{4}.
-\frac{1}{2}-\frac{1}{2}i\sqrt{3}
Tangohia te \frac{3}{4} i te \frac{1}{4}, ka -\frac{1}{2}.