Aromātai
5
Tauwehe
5
Tohaina
Kua tāruatia ki te papatopenga
\frac{25}{11}\times \frac{14}{\sqrt{25}}\times \frac{11}{\sqrt{196}}
Tātaitia te pūtakerua o 625 kia tae ki 25.
\frac{25}{11}\times \frac{14}{5}\times \frac{11}{\sqrt{196}}
Tātaitia te pūtakerua o 25 kia tae ki 5.
\frac{25\times 14}{11\times 5}\times \frac{11}{\sqrt{196}}
Me whakarea te \frac{25}{11} ki te \frac{14}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{350}{55}\times \frac{11}{\sqrt{196}}
Mahia ngā whakarea i roto i te hautanga \frac{25\times 14}{11\times 5}.
\frac{70}{11}\times \frac{11}{\sqrt{196}}
Whakahekea te hautanga \frac{350}{55} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{70}{11}\times \frac{11}{14}
Tātaitia te pūtakerua o 196 kia tae ki 14.
\frac{70\times 11}{11\times 14}
Me whakarea te \frac{70}{11} ki te \frac{11}{14} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{70}{14}
Me whakakore tahi te 11 i te taurunga me te tauraro.
5
Whakawehea te 70 ki te 14, kia riro ko 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}