Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{9\times 2\sqrt{13}-4^{3}-3}{4^{2}}-\frac{52\times 2}{23}
Tauwehea te 52=2^{2}\times 13. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 13} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{13}. Tuhia te pūtakerua o te 2^{2}.
\frac{18\sqrt{13}-4^{3}-3}{4^{2}}-\frac{52\times 2}{23}
Whakareatia te 9 ki te 2, ka 18.
\frac{18\sqrt{13}-64-3}{4^{2}}-\frac{52\times 2}{23}
Tātaihia te 4 mā te pū o 3, kia riro ko 64.
\frac{18\sqrt{13}-67}{4^{2}}-\frac{52\times 2}{23}
Tangohia te 3 i te -64, ka -67.
\frac{18\sqrt{13}-67}{16}-\frac{52\times 2}{23}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
\frac{18\sqrt{13}-67}{16}-\frac{104}{23}
Whakareatia te 52 ki te 2, ka 104.
\frac{23\left(18\sqrt{13}-67\right)}{368}-\frac{104\times 16}{368}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 16 me 23 ko 368. Whakareatia \frac{18\sqrt{13}-67}{16} ki te \frac{23}{23}. Whakareatia \frac{104}{23} ki te \frac{16}{16}.
\frac{23\left(18\sqrt{13}-67\right)-104\times 16}{368}
Tā te mea he rite te tauraro o \frac{23\left(18\sqrt{13}-67\right)}{368} me \frac{104\times 16}{368}, me tango rāua mā te tango i ō raua taurunga.
\frac{414\sqrt{13}-1541-1664}{368}
Mahia ngā whakarea i roto o 23\left(18\sqrt{13}-67\right)-104\times 16.
\frac{414\sqrt{13}-3205}{368}
Mahia ngā tātaitai i roto o 414\sqrt{13}-1541-1664.