Aromātai
\frac{9\sqrt{13}}{8}-\frac{3205}{368}\approx -4.652993946
Tauwehe
\frac{414 \sqrt{13} - 3205}{368} = -4.652993945537795
Tohaina
Kua tāruatia ki te papatopenga
\frac{9\times 2\sqrt{13}-4^{3}-3}{4^{2}}-\frac{52\times 2}{23}
Tauwehea te 52=2^{2}\times 13. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 13} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{13}. Tuhia te pūtakerua o te 2^{2}.
\frac{18\sqrt{13}-4^{3}-3}{4^{2}}-\frac{52\times 2}{23}
Whakareatia te 9 ki te 2, ka 18.
\frac{18\sqrt{13}-64-3}{4^{2}}-\frac{52\times 2}{23}
Tātaihia te 4 mā te pū o 3, kia riro ko 64.
\frac{18\sqrt{13}-67}{4^{2}}-\frac{52\times 2}{23}
Tangohia te 3 i te -64, ka -67.
\frac{18\sqrt{13}-67}{16}-\frac{52\times 2}{23}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
\frac{18\sqrt{13}-67}{16}-\frac{104}{23}
Whakareatia te 52 ki te 2, ka 104.
\frac{23\left(18\sqrt{13}-67\right)}{368}-\frac{104\times 16}{368}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 16 me 23 ko 368. Whakareatia \frac{18\sqrt{13}-67}{16} ki te \frac{23}{23}. Whakareatia \frac{104}{23} ki te \frac{16}{16}.
\frac{23\left(18\sqrt{13}-67\right)-104\times 16}{368}
Tā te mea he rite te tauraro o \frac{23\left(18\sqrt{13}-67\right)}{368} me \frac{104\times 16}{368}, me tango rāua mā te tango i ō raua taurunga.
\frac{414\sqrt{13}-1541-1664}{368}
Mahia ngā whakarea i roto o 23\left(18\sqrt{13}-67\right)-104\times 16.
\frac{414\sqrt{13}-3205}{368}
Mahia ngā tātaitai i roto o 414\sqrt{13}-1541-1664.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}