Aromātai
\frac{3}{10}=0.3
Tauwehe
\frac{3}{2 \cdot 5} = 0.3
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{\sqrt{5}\sqrt{6}}{\left(\sqrt{6}\right)^{2}}-\frac{\sqrt{2}}{\sqrt{15}}\right)^{2}
Whakangāwaritia te tauraro o \frac{\sqrt{5}}{\sqrt{6}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{6}.
\left(\frac{\sqrt{5}\sqrt{6}}{6}-\frac{\sqrt{2}}{\sqrt{15}}\right)^{2}
Ko te pūrua o \sqrt{6} ko 6.
\left(\frac{\sqrt{30}}{6}-\frac{\sqrt{2}}{\sqrt{15}}\right)^{2}
Hei whakarea \sqrt{5} me \sqrt{6}, whakareatia ngā tau i raro i te pūtake rua.
\left(\frac{\sqrt{30}}{6}-\frac{\sqrt{2}\sqrt{15}}{\left(\sqrt{15}\right)^{2}}\right)^{2}
Whakangāwaritia te tauraro o \frac{\sqrt{2}}{\sqrt{15}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{15}.
\left(\frac{\sqrt{30}}{6}-\frac{\sqrt{2}\sqrt{15}}{15}\right)^{2}
Ko te pūrua o \sqrt{15} ko 15.
\left(\frac{\sqrt{30}}{6}-\frac{\sqrt{30}}{15}\right)^{2}
Hei whakarea \sqrt{2} me \sqrt{15}, whakareatia ngā tau i raro i te pūtake rua.
\left(\frac{1}{10}\sqrt{30}\right)^{2}
Pahekotia te \frac{\sqrt{30}}{6} me -\frac{\sqrt{30}}{15}, ka \frac{1}{10}\sqrt{30}.
\left(\frac{1}{10}\right)^{2}\left(\sqrt{30}\right)^{2}
Whakarohaina te \left(\frac{1}{10}\sqrt{30}\right)^{2}.
\frac{1}{100}\left(\sqrt{30}\right)^{2}
Tātaihia te \frac{1}{10} mā te pū o 2, kia riro ko \frac{1}{100}.
\frac{1}{100}\times 30
Ko te pūrua o \sqrt{30} ko 30.
\frac{3}{10}
Whakareatia te \frac{1}{100} ki te 30, ka \frac{3}{10}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}