Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\sqrt{5}\sqrt{6}}{\left(\sqrt{6}\right)^{2}}-\frac{\sqrt{2}}{\sqrt{15}}
Whakangāwaritia te tauraro o \frac{\sqrt{5}}{\sqrt{6}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{6}.
\frac{\sqrt{5}\sqrt{6}}{6}-\frac{\sqrt{2}}{\sqrt{15}}
Ko te pūrua o \sqrt{6} ko 6.
\frac{\sqrt{30}}{6}-\frac{\sqrt{2}}{\sqrt{15}}
Hei whakarea \sqrt{5} me \sqrt{6}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{30}}{6}-\frac{\sqrt{2}\sqrt{15}}{\left(\sqrt{15}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{2}}{\sqrt{15}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{15}.
\frac{\sqrt{30}}{6}-\frac{\sqrt{2}\sqrt{15}}{15}
Ko te pūrua o \sqrt{15} ko 15.
\frac{\sqrt{30}}{6}-\frac{\sqrt{30}}{15}
Hei whakarea \sqrt{2} me \sqrt{15}, whakareatia ngā tau i raro i te pūtake rua.
\frac{1}{10}\sqrt{30}
Pahekotia te \frac{\sqrt{30}}{6} me -\frac{\sqrt{30}}{15}, ka \frac{1}{10}\sqrt{30}.