Aromātai
\frac{3\sqrt{5}+7}{2}\approx 6.854101966
Whakaroha
\frac{3 \sqrt{5} + 7}{2} = 6.854101966249685
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(\sqrt{5}+3\right)^{2}}{2^{2}}
Kia whakarewa i te \frac{\sqrt{5}+3}{2} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(\sqrt{5}\right)^{2}+6\sqrt{5}+9}{2^{2}}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(\sqrt{5}+3\right)^{2}.
\frac{5+6\sqrt{5}+9}{2^{2}}
Ko te pūrua o \sqrt{5} ko 5.
\frac{14+6\sqrt{5}}{2^{2}}
Tāpirihia te 5 ki te 9, ka 14.
\frac{14+6\sqrt{5}}{4}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{\left(\sqrt{5}+3\right)^{2}}{2^{2}}
Kia whakarewa i te \frac{\sqrt{5}+3}{2} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(\sqrt{5}\right)^{2}+6\sqrt{5}+9}{2^{2}}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(\sqrt{5}+3\right)^{2}.
\frac{5+6\sqrt{5}+9}{2^{2}}
Ko te pūrua o \sqrt{5} ko 5.
\frac{14+6\sqrt{5}}{2^{2}}
Tāpirihia te 5 ki te 9, ka 14.
\frac{14+6\sqrt{5}}{4}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}