Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(\sqrt{5}+3\right)^{2}}{2^{2}}
Kia whakarewa i te \frac{\sqrt{5}+3}{2} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(\sqrt{5}\right)^{2}+6\sqrt{5}+9}{2^{2}}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(\sqrt{5}+3\right)^{2}.
\frac{5+6\sqrt{5}+9}{2^{2}}
Ko te pūrua o \sqrt{5} ko 5.
\frac{14+6\sqrt{5}}{2^{2}}
Tāpirihia te 5 ki te 9, ka 14.
\frac{14+6\sqrt{5}}{4}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{\left(\sqrt{5}+3\right)^{2}}{2^{2}}
Kia whakarewa i te \frac{\sqrt{5}+3}{2} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(\sqrt{5}\right)^{2}+6\sqrt{5}+9}{2^{2}}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(\sqrt{5}+3\right)^{2}.
\frac{5+6\sqrt{5}+9}{2^{2}}
Ko te pūrua o \sqrt{5} ko 5.
\frac{14+6\sqrt{5}}{2^{2}}
Tāpirihia te 5 ki te 9, ka 14.
\frac{14+6\sqrt{5}}{4}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.