Aromātai
4\sqrt{3}+7\approx 13.92820323
Whakaroha
4 \sqrt{3} + 7 = 13.92820323
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
( \frac { \sqrt { 3 } + 1 } { \sqrt { 3 } - 1 } ) ^ { 2 }
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\right)^{2}
Whakangāwaritia te tauraro o \frac{\sqrt{3}+1}{\sqrt{3}-1} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}+1.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}\right)^{2}
Whakaarohia te \left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{3-1}\right)^{2}
Pūrua \sqrt{3}. Pūrua 1.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{2}\right)^{2}
Tangohia te 1 i te 3, ka 2.
\left(\frac{\left(\sqrt{3}+1\right)^{2}}{2}\right)^{2}
Whakareatia te \sqrt{3}+1 ki te \sqrt{3}+1, ka \left(\sqrt{3}+1\right)^{2}.
\left(\frac{\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1}{2}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(\sqrt{3}+1\right)^{2}.
\left(\frac{3+2\sqrt{3}+1}{2}\right)^{2}
Ko te pūrua o \sqrt{3} ko 3.
\left(\frac{4+2\sqrt{3}}{2}\right)^{2}
Tāpirihia te 3 ki te 1, ka 4.
\left(2+\sqrt{3}\right)^{2}
Whakawehea ia wā o 4+2\sqrt{3} ki te 2, kia riro ko 2+\sqrt{3}.
4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2+\sqrt{3}\right)^{2}.
4+4\sqrt{3}+3
Ko te pūrua o \sqrt{3} ko 3.
7+4\sqrt{3}
Tāpirihia te 4 ki te 3, ka 7.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\right)^{2}
Whakangāwaritia te tauraro o \frac{\sqrt{3}+1}{\sqrt{3}-1} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}+1.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}\right)^{2}
Whakaarohia te \left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{3-1}\right)^{2}
Pūrua \sqrt{3}. Pūrua 1.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{2}\right)^{2}
Tangohia te 1 i te 3, ka 2.
\left(\frac{\left(\sqrt{3}+1\right)^{2}}{2}\right)^{2}
Whakareatia te \sqrt{3}+1 ki te \sqrt{3}+1, ka \left(\sqrt{3}+1\right)^{2}.
\left(\frac{\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1}{2}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(\sqrt{3}+1\right)^{2}.
\left(\frac{3+2\sqrt{3}+1}{2}\right)^{2}
Ko te pūrua o \sqrt{3} ko 3.
\left(\frac{4+2\sqrt{3}}{2}\right)^{2}
Tāpirihia te 3 ki te 1, ka 4.
\left(2+\sqrt{3}\right)^{2}
Whakawehea ia wā o 4+2\sqrt{3} ki te 2, kia riro ko 2+\sqrt{3}.
4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2+\sqrt{3}\right)^{2}.
4+4\sqrt{3}+3
Ko te pūrua o \sqrt{3} ko 3.
7+4\sqrt{3}
Tāpirihia te 4 ki te 3, ka 7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}