Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\right)^{2}
Whakangāwaritia te tauraro o \frac{\sqrt{3}+1}{\sqrt{3}-1} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}+1.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}\right)^{2}
Whakaarohia te \left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{3-1}\right)^{2}
Pūrua \sqrt{3}. Pūrua 1.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{2}\right)^{2}
Tangohia te 1 i te 3, ka 2.
\left(\frac{\left(\sqrt{3}+1\right)^{2}}{2}\right)^{2}
Whakareatia te \sqrt{3}+1 ki te \sqrt{3}+1, ka \left(\sqrt{3}+1\right)^{2}.
\left(\frac{\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1}{2}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(\sqrt{3}+1\right)^{2}.
\left(\frac{3+2\sqrt{3}+1}{2}\right)^{2}
Ko te pūrua o \sqrt{3} ko 3.
\left(\frac{4+2\sqrt{3}}{2}\right)^{2}
Tāpirihia te 3 ki te 1, ka 4.
\left(2+\sqrt{3}\right)^{2}
Whakawehea ia wā o 4+2\sqrt{3} ki te 2, kia riro ko 2+\sqrt{3}.
4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2+\sqrt{3}\right)^{2}.
4+4\sqrt{3}+3
Ko te pūrua o \sqrt{3} ko 3.
7+4\sqrt{3}
Tāpirihia te 4 ki te 3, ka 7.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\right)^{2}
Whakangāwaritia te tauraro o \frac{\sqrt{3}+1}{\sqrt{3}-1} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}+1.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}\right)^{2}
Whakaarohia te \left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{3-1}\right)^{2}
Pūrua \sqrt{3}. Pūrua 1.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{2}\right)^{2}
Tangohia te 1 i te 3, ka 2.
\left(\frac{\left(\sqrt{3}+1\right)^{2}}{2}\right)^{2}
Whakareatia te \sqrt{3}+1 ki te \sqrt{3}+1, ka \left(\sqrt{3}+1\right)^{2}.
\left(\frac{\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1}{2}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(\sqrt{3}+1\right)^{2}.
\left(\frac{3+2\sqrt{3}+1}{2}\right)^{2}
Ko te pūrua o \sqrt{3} ko 3.
\left(\frac{4+2\sqrt{3}}{2}\right)^{2}
Tāpirihia te 3 ki te 1, ka 4.
\left(2+\sqrt{3}\right)^{2}
Whakawehea ia wā o 4+2\sqrt{3} ki te 2, kia riro ko 2+\sqrt{3}.
4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2+\sqrt{3}\right)^{2}.
4+4\sqrt{3}+3
Ko te pūrua o \sqrt{3} ko 3.
7+4\sqrt{3}
Tāpirihia te 4 ki te 3, ka 7.