Aromātai
\frac{18\sqrt{2}+163}{25921}\approx 0.007270393
Whakaroha
\frac{18 \sqrt{2} + 163}{25921} = 0.007270392505023561
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{\left(\sqrt{2}-18\right)\left(\sqrt{2}+18\right)}\right)^{2}
Whakangāwaritia te tauraro o \frac{\sqrt{2}}{\sqrt{2}-18} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}+18.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{\left(\sqrt{2}\right)^{2}-18^{2}}\right)^{2}
Whakaarohia te \left(\sqrt{2}-18\right)\left(\sqrt{2}+18\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{2-324}\right)^{2}
Pūrua \sqrt{2}. Pūrua 18.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{-322}\right)^{2}
Tangohia te 324 i te 2, ka -322.
\frac{\left(\sqrt{2}\left(\sqrt{2}+18\right)\right)^{2}}{\left(-322\right)^{2}}
Kia whakarewa i te \frac{\sqrt{2}\left(\sqrt{2}+18\right)}{-322} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(\sqrt{2}\right)^{2}\left(\sqrt{2}+18\right)^{2}}{\left(-322\right)^{2}}
Whakarohaina te \left(\sqrt{2}\left(\sqrt{2}+18\right)\right)^{2}.
\frac{2\left(\sqrt{2}+18\right)^{2}}{\left(-322\right)^{2}}
Ko te pūrua o \sqrt{2} ko 2.
\frac{2\left(\left(\sqrt{2}\right)^{2}+36\sqrt{2}+324\right)}{\left(-322\right)^{2}}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(\sqrt{2}+18\right)^{2}.
\frac{2\left(2+36\sqrt{2}+324\right)}{\left(-322\right)^{2}}
Ko te pūrua o \sqrt{2} ko 2.
\frac{2\left(326+36\sqrt{2}\right)}{\left(-322\right)^{2}}
Tāpirihia te 2 ki te 324, ka 326.
\frac{2\left(326+36\sqrt{2}\right)}{103684}
Tātaihia te -322 mā te pū o 2, kia riro ko 103684.
\frac{1}{51842}\left(326+36\sqrt{2}\right)
Whakawehea te 2\left(326+36\sqrt{2}\right) ki te 103684, kia riro ko \frac{1}{51842}\left(326+36\sqrt{2}\right).
\frac{163}{25921}+\frac{18}{25921}\sqrt{2}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{51842} ki te 326+36\sqrt{2}.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{\left(\sqrt{2}-18\right)\left(\sqrt{2}+18\right)}\right)^{2}
Whakangāwaritia te tauraro o \frac{\sqrt{2}}{\sqrt{2}-18} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}+18.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{\left(\sqrt{2}\right)^{2}-18^{2}}\right)^{2}
Whakaarohia te \left(\sqrt{2}-18\right)\left(\sqrt{2}+18\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{2-324}\right)^{2}
Pūrua \sqrt{2}. Pūrua 18.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{-322}\right)^{2}
Tangohia te 324 i te 2, ka -322.
\frac{\left(\sqrt{2}\left(\sqrt{2}+18\right)\right)^{2}}{\left(-322\right)^{2}}
Kia whakarewa i te \frac{\sqrt{2}\left(\sqrt{2}+18\right)}{-322} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(\sqrt{2}\right)^{2}\left(\sqrt{2}+18\right)^{2}}{\left(-322\right)^{2}}
Whakarohaina te \left(\sqrt{2}\left(\sqrt{2}+18\right)\right)^{2}.
\frac{2\left(\sqrt{2}+18\right)^{2}}{\left(-322\right)^{2}}
Ko te pūrua o \sqrt{2} ko 2.
\frac{2\left(\left(\sqrt{2}\right)^{2}+36\sqrt{2}+324\right)}{\left(-322\right)^{2}}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(\sqrt{2}+18\right)^{2}.
\frac{2\left(2+36\sqrt{2}+324\right)}{\left(-322\right)^{2}}
Ko te pūrua o \sqrt{2} ko 2.
\frac{2\left(326+36\sqrt{2}\right)}{\left(-322\right)^{2}}
Tāpirihia te 2 ki te 324, ka 326.
\frac{2\left(326+36\sqrt{2}\right)}{103684}
Tātaihia te -322 mā te pū o 2, kia riro ko 103684.
\frac{1}{51842}\left(326+36\sqrt{2}\right)
Whakawehea te 2\left(326+36\sqrt{2}\right) ki te 103684, kia riro ko \frac{1}{51842}\left(326+36\sqrt{2}\right).
\frac{163}{25921}+\frac{18}{25921}\sqrt{2}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{51842} ki te 326+36\sqrt{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}