Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\frac{\eta n}{mn}-\frac{mm}{mn}\right)\times \frac{m}{n-m}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o m me n ko mn. Whakareatia \frac{\eta }{m} ki te \frac{n}{n}. Whakareatia \frac{m}{n} ki te \frac{m}{m}.
\frac{\eta n-mm}{mn}\times \frac{m}{n-m}
Tā te mea he rite te tauraro o \frac{\eta n}{mn} me \frac{mm}{mn}, me tango rāua mā te tango i ō raua taurunga.
\frac{\eta n-m^{2}}{mn}\times \frac{m}{n-m}
Mahia ngā whakarea i roto o \eta n-mm.
\frac{\left(\eta n-m^{2}\right)m}{mn\left(n-m\right)}
Me whakarea te \frac{\eta n-m^{2}}{mn} ki te \frac{m}{n-m} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-m^{2}+n\eta }{n\left(-m+n\right)}
Me whakakore tahi te m i te taurunga me te tauraro.
\frac{-m^{2}+n\eta }{-nm+n^{2}}
Whakamahia te āhuatanga tohatoha hei whakarea te n ki te -m+n.
\left(\frac{\eta n}{mn}-\frac{mm}{mn}\right)\times \frac{m}{n-m}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o m me n ko mn. Whakareatia \frac{\eta }{m} ki te \frac{n}{n}. Whakareatia \frac{m}{n} ki te \frac{m}{m}.
\frac{\eta n-mm}{mn}\times \frac{m}{n-m}
Tā te mea he rite te tauraro o \frac{\eta n}{mn} me \frac{mm}{mn}, me tango rāua mā te tango i ō raua taurunga.
\frac{\eta n-m^{2}}{mn}\times \frac{m}{n-m}
Mahia ngā whakarea i roto o \eta n-mm.
\frac{\left(\eta n-m^{2}\right)m}{mn\left(n-m\right)}
Me whakarea te \frac{\eta n-m^{2}}{mn} ki te \frac{m}{n-m} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-m^{2}+n\eta }{n\left(-m+n\right)}
Me whakakore tahi te m i te taurunga me te tauraro.
\frac{-m^{2}+n\eta }{-nm+n^{2}}
Whakamahia te āhuatanga tohatoha hei whakarea te n ki te -m+n.