Aromātai
3
Tauwehe
3
Tohaina
Kua tāruatia ki te papatopenga
\frac{4+3}{4}-\frac{5}{6}-\frac{1\times 4+1}{4}+\frac{3\times 3+1}{3}
Whakareatia te 1 ki te 4, ka 4.
\frac{7}{4}-\frac{5}{6}-\frac{1\times 4+1}{4}+\frac{3\times 3+1}{3}
Tāpirihia te 4 ki te 3, ka 7.
\frac{21}{12}-\frac{10}{12}-\frac{1\times 4+1}{4}+\frac{3\times 3+1}{3}
Ko te maha noa iti rawa atu o 4 me 6 ko 12. Me tahuri \frac{7}{4} me \frac{5}{6} ki te hautau me te tautūnga 12.
\frac{21-10}{12}-\frac{1\times 4+1}{4}+\frac{3\times 3+1}{3}
Tā te mea he rite te tauraro o \frac{21}{12} me \frac{10}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{11}{12}-\frac{1\times 4+1}{4}+\frac{3\times 3+1}{3}
Tangohia te 10 i te 21, ka 11.
\frac{11}{12}-\frac{4+1}{4}+\frac{3\times 3+1}{3}
Whakareatia te 1 ki te 4, ka 4.
\frac{11}{12}-\frac{5}{4}+\frac{3\times 3+1}{3}
Tāpirihia te 4 ki te 1, ka 5.
\frac{11}{12}-\frac{15}{12}+\frac{3\times 3+1}{3}
Ko te maha noa iti rawa atu o 12 me 4 ko 12. Me tahuri \frac{11}{12} me \frac{5}{4} ki te hautau me te tautūnga 12.
\frac{11-15}{12}+\frac{3\times 3+1}{3}
Tā te mea he rite te tauraro o \frac{11}{12} me \frac{15}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{-4}{12}+\frac{3\times 3+1}{3}
Tangohia te 15 i te 11, ka -4.
-\frac{1}{3}+\frac{3\times 3+1}{3}
Whakahekea te hautanga \frac{-4}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
-\frac{1}{3}+\frac{9+1}{3}
Whakareatia te 3 ki te 3, ka 9.
-\frac{1}{3}+\frac{10}{3}
Tāpirihia te 9 ki te 1, ka 10.
\frac{-1+10}{3}
Tā te mea he rite te tauraro o -\frac{1}{3} me \frac{10}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{9}{3}
Tāpirihia te -1 ki te 10, ka 9.
3
Whakawehea te 9 ki te 3, kia riro ko 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}