Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki F
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

F\times 3\left(2^{2}+1\right)\left(2^{4}+1\right)\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1
Tāpirihia te 2 ki te 1, ka 3.
F\times 3\left(4+1\right)\left(2^{4}+1\right)\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
F\times 3\times 5\left(2^{4}+1\right)\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1
Tāpirihia te 4 ki te 1, ka 5.
F\times 15\left(2^{4}+1\right)\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1
Whakareatia te 3 ki te 5, ka 15.
F\times 15\left(16+1\right)\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1
Tātaihia te 2 mā te pū o 4, kia riro ko 16.
F\times 15\times 17\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1
Tāpirihia te 16 ki te 1, ka 17.
F\times 255\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1
Whakareatia te 15 ki te 17, ka 255.
F\times 255\left(256+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1
Tātaihia te 2 mā te pū o 8, kia riro ko 256.
F\times 255\times 257\left(2^{16}+1\right)\left(2^{32}+1\right)+1
Tāpirihia te 256 ki te 1, ka 257.
F\times 65535\left(2^{16}+1\right)\left(2^{32}+1\right)+1
Whakareatia te 255 ki te 257, ka 65535.
F\times 65535\left(65536+1\right)\left(2^{32}+1\right)+1
Tātaihia te 2 mā te pū o 16, kia riro ko 65536.
F\times 65535\times 65537\left(2^{32}+1\right)+1
Tāpirihia te 65536 ki te 1, ka 65537.
F\times 4294967295\left(2^{32}+1\right)+1
Whakareatia te 65535 ki te 65537, ka 4294967295.
F\times 4294967295\left(4294967296+1\right)+1
Tātaihia te 2 mā te pū o 32, kia riro ko 4294967296.
F\times 4294967295\times 4294967297+1
Tāpirihia te 4294967296 ki te 1, ka 4294967297.
F\times 18446744073709551615+1
Whakareatia te 4294967295 ki te 4294967297, ka 18446744073709551615.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 3\left(2^{2}+1\right)\left(2^{4}+1\right)\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1)
Tāpirihia te 2 ki te 1, ka 3.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 3\left(4+1\right)\left(2^{4}+1\right)\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1)
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 3\times 5\left(2^{4}+1\right)\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1)
Tāpirihia te 4 ki te 1, ka 5.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 15\left(2^{4}+1\right)\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1)
Whakareatia te 3 ki te 5, ka 15.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 15\left(16+1\right)\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1)
Tātaihia te 2 mā te pū o 4, kia riro ko 16.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 15\times 17\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1)
Tāpirihia te 16 ki te 1, ka 17.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 255\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1)
Whakareatia te 15 ki te 17, ka 255.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 255\left(256+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1)
Tātaihia te 2 mā te pū o 8, kia riro ko 256.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 255\times 257\left(2^{16}+1\right)\left(2^{32}+1\right)+1)
Tāpirihia te 256 ki te 1, ka 257.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 65535\left(2^{16}+1\right)\left(2^{32}+1\right)+1)
Whakareatia te 255 ki te 257, ka 65535.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 65535\left(65536+1\right)\left(2^{32}+1\right)+1)
Tātaihia te 2 mā te pū o 16, kia riro ko 65536.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 65535\times 65537\left(2^{32}+1\right)+1)
Tāpirihia te 65536 ki te 1, ka 65537.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 4294967295\left(2^{32}+1\right)+1)
Whakareatia te 65535 ki te 65537, ka 4294967295.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 4294967295\left(4294967296+1\right)+1)
Tātaihia te 2 mā te pū o 32, kia riro ko 4294967296.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 4294967295\times 4294967297+1)
Tāpirihia te 4294967296 ki te 1, ka 4294967297.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 18446744073709551615+1)
Whakareatia te 4294967295 ki te 4294967297, ka 18446744073709551615.
18446744073709551615F^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
18446744073709551615F^{0}
Tango 1 mai i 1.
18446744073709551615\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
18446744073709551615
Mō tētahi kupu t, t\times 1=t me 1t=t.