Aromātai
\frac{1}{2}=0.5
Tauwehe
\frac{1}{2} = 0.5
Tohaina
Kua tāruatia ki te papatopenga
\frac{18}{15}-\frac{20}{15}-\left(-\frac{5}{2}+\frac{7}{3}-\frac{1}{6}\right)-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
Ko te maha noa iti rawa atu o 5 me 3 ko 15. Me tahuri \frac{6}{5} me \frac{4}{3} ki te hautau me te tautūnga 15.
\frac{18-20}{15}-\left(-\frac{5}{2}+\frac{7}{3}-\frac{1}{6}\right)-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
Tā te mea he rite te tauraro o \frac{18}{15} me \frac{20}{15}, me tango rāua mā te tango i ō raua taurunga.
-\frac{2}{15}-\left(-\frac{5}{2}+\frac{7}{3}-\frac{1}{6}\right)-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
Tangohia te 20 i te 18, ka -2.
-\frac{2}{15}-\left(-\frac{15}{6}+\frac{14}{6}-\frac{1}{6}\right)-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
Ko te maha noa iti rawa atu o 2 me 3 ko 6. Me tahuri -\frac{5}{2} me \frac{7}{3} ki te hautau me te tautūnga 6.
-\frac{2}{15}-\left(\frac{-15+14}{6}-\frac{1}{6}\right)-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
Tā te mea he rite te tauraro o -\frac{15}{6} me \frac{14}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{2}{15}-\left(-\frac{1}{6}-\frac{1}{6}\right)-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
Tāpirihia te -15 ki te 14, ka -1.
-\frac{2}{15}-\frac{-1-1}{6}-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
Tā te mea he rite te tauraro o -\frac{1}{6} me \frac{1}{6}, me tango rāua mā te tango i ō raua taurunga.
-\frac{2}{15}-\frac{-2}{6}-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
Tangohia te 1 i te -1, ka -2.
-\frac{2}{15}-\left(-\frac{1}{3}\right)-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
Whakahekea te hautanga \frac{-2}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
-\frac{2}{15}+\frac{1}{3}-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
Ko te tauaro o -\frac{1}{3} ko \frac{1}{3}.
-\frac{2}{15}+\frac{5}{15}-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
Ko te maha noa iti rawa atu o 15 me 3 ko 15. Me tahuri -\frac{2}{15} me \frac{1}{3} ki te hautau me te tautūnga 15.
\frac{-2+5}{15}-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
Tā te mea he rite te tauraro o -\frac{2}{15} me \frac{5}{15}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3}{15}-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
Tāpirihia te -2 ki te 5, ka 3.
\frac{1}{5}-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
Whakahekea te hautanga \frac{3}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{1-4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
Tā te mea he rite te tauraro o \frac{1}{5} me \frac{4}{5}, me tango rāua mā te tango i ō raua taurunga.
-\frac{3}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
Tangohia te 4 i te 1, ka -3.
-\frac{12}{20}+\frac{15}{20}-\left(-\frac{7}{20}\right)
Ko te maha noa iti rawa atu o 5 me 4 ko 20. Me tahuri -\frac{3}{5} me \frac{3}{4} ki te hautau me te tautūnga 20.
\frac{-12+15}{20}-\left(-\frac{7}{20}\right)
Tā te mea he rite te tauraro o -\frac{12}{20} me \frac{15}{20}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3}{20}-\left(-\frac{7}{20}\right)
Tāpirihia te -12 ki te 15, ka 3.
\frac{3}{20}+\frac{7}{20}
Ko te tauaro o -\frac{7}{20} ko \frac{7}{20}.
\frac{3+7}{20}
Tā te mea he rite te tauraro o \frac{3}{20} me \frac{7}{20}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{10}{20}
Tāpirihia te 3 ki te 7, ka 10.
\frac{1}{2}
Whakahekea te hautanga \frac{10}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}