Aromātai
1
Tauwehe
1
Tohaina
Kua tāruatia ki te papatopenga
\frac{10}{15}-\frac{3}{15}+\frac{4}{3}-\frac{4}{5}
Ko te maha noa iti rawa atu o 3 me 5 ko 15. Me tahuri \frac{2}{3} me \frac{1}{5} ki te hautau me te tautūnga 15.
\frac{10-3}{15}+\frac{4}{3}-\frac{4}{5}
Tā te mea he rite te tauraro o \frac{10}{15} me \frac{3}{15}, me tango rāua mā te tango i ō raua taurunga.
\frac{7}{15}+\frac{4}{3}-\frac{4}{5}
Tangohia te 3 i te 10, ka 7.
\frac{7}{15}+\frac{20}{15}-\frac{4}{5}
Ko te maha noa iti rawa atu o 15 me 3 ko 15. Me tahuri \frac{7}{15} me \frac{4}{3} ki te hautau me te tautūnga 15.
\frac{7+20}{15}-\frac{4}{5}
Tā te mea he rite te tauraro o \frac{7}{15} me \frac{20}{15}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{27}{15}-\frac{4}{5}
Tāpirihia te 7 ki te 20, ka 27.
\frac{9}{5}-\frac{4}{5}
Whakahekea te hautanga \frac{27}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{9-4}{5}
Tā te mea he rite te tauraro o \frac{9}{5} me \frac{4}{5}, me tango rāua mā te tango i ō raua taurunga.
\frac{5}{5}
Tangohia te 4 i te 9, ka 5.
1
Whakawehea te 5 ki te 5, kia riro ko 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}