Aromātai
0
Tauwehe
0
Tohaina
Kua tāruatia ki te papatopenga
\frac{1-5}{7}+\frac{3}{5}-\frac{1}{35}
Tā te mea he rite te tauraro o \frac{1}{7} me \frac{5}{7}, me tango rāua mā te tango i ō raua taurunga.
-\frac{4}{7}+\frac{3}{5}-\frac{1}{35}
Tangohia te 5 i te 1, ka -4.
-\frac{20}{35}+\frac{21}{35}-\frac{1}{35}
Ko te maha noa iti rawa atu o 7 me 5 ko 35. Me tahuri -\frac{4}{7} me \frac{3}{5} ki te hautau me te tautūnga 35.
\frac{-20+21}{35}-\frac{1}{35}
Tā te mea he rite te tauraro o -\frac{20}{35} me \frac{21}{35}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1}{35}-\frac{1}{35}
Tāpirihia te -20 ki te 21, ka 1.
0
Tangohia te \frac{1}{35} i te \frac{1}{35}, ka 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}