Aromātai
1
Tauwehe
1
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{6}-\frac{4}{6}-\left(-\frac{1\times 6+1}{6}\right)
Ko te maha noa iti rawa atu o 2 me 3 ko 6. Me tahuri \frac{1}{2} me \frac{2}{3} ki te hautau me te tautūnga 6.
\frac{3-4}{6}-\left(-\frac{1\times 6+1}{6}\right)
Tā te mea he rite te tauraro o \frac{3}{6} me \frac{4}{6}, me tango rāua mā te tango i ō raua taurunga.
-\frac{1}{6}-\left(-\frac{1\times 6+1}{6}\right)
Tangohia te 4 i te 3, ka -1.
-\frac{1}{6}-\left(-\frac{6+1}{6}\right)
Whakareatia te 1 ki te 6, ka 6.
-\frac{1}{6}-\left(-\frac{7}{6}\right)
Tāpirihia te 6 ki te 1, ka 7.
-\frac{1}{6}+\frac{7}{6}
Ko te tauaro o -\frac{7}{6} ko \frac{7}{6}.
\frac{-1+7}{6}
Tā te mea he rite te tauraro o -\frac{1}{6} me \frac{7}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{6}{6}
Tāpirihia te -1 ki te 7, ka 6.
1
Whakawehea te 6 ki te 6, kia riro ko 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}