Whakaoti mō k_1
k_{1}=\frac{253}{595500}\approx 0.000424853
Tohaina
Kua tāruatia ki te papatopenga
69=49625k_{1}+\frac{575}{12}
Ko te uara pū o tētahi tau tūturu a ko a ina a\geq 0, ko -a rānei ina a<0. Ko te uara pū o 69 ko 69.
49625k_{1}+\frac{575}{12}=69
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
49625k_{1}=69-\frac{575}{12}
Tangohia te \frac{575}{12} mai i ngā taha e rua.
49625k_{1}=\frac{828}{12}-\frac{575}{12}
Me tahuri te 69 ki te hautau \frac{828}{12}.
49625k_{1}=\frac{828-575}{12}
Tā te mea he rite te tauraro o \frac{828}{12} me \frac{575}{12}, me tango rāua mā te tango i ō raua taurunga.
49625k_{1}=\frac{253}{12}
Tangohia te 575 i te 828, ka 253.
k_{1}=\frac{\frac{253}{12}}{49625}
Whakawehea ngā taha e rua ki te 49625.
k_{1}=\frac{253}{12\times 49625}
Tuhia te \frac{\frac{253}{12}}{49625} hei hautanga kotahi.
k_{1}=\frac{253}{595500}
Whakareatia te 12 ki te 49625, ka 595500.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}