Whakaoti mō y
y = \frac{41}{16} = 2\frac{9}{16} = 2.5625
y = \frac{23}{16} = 1\frac{7}{16} = 1.4375
Graph
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
| 2 - y | : ( - \frac { 2 } { 5 } ) = - 1 \frac { 13 } { 32 }
Tohaina
Kua tāruatia ki te papatopenga
32\times \frac{|2-y|}{-\frac{2}{5}}=-\left(1\times 32+13\right)
Whakareatia ngā taha e rua o te whārite ki te 32.
32\times \frac{|2-y|}{-\frac{2}{5}}=-\left(32+13\right)
Whakareatia te 1 ki te 32, ka 32.
32\times \frac{|2-y|}{-\frac{2}{5}}=-45
Tāpirihia te 32 ki te 13, ka 45.
\frac{|2-y|}{-\frac{2}{5}}=-\frac{45}{32}
Whakawehea ngā taha e rua ki te 32.
|2-y|=-\frac{45}{32}\left(-\frac{2}{5}\right)
Me whakarea ngā taha e rua ki te -\frac{2}{5}.
|2-y|=\frac{-45\left(-2\right)}{32\times 5}
Me whakarea te -\frac{45}{32} ki te -\frac{2}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
|2-y|=\frac{90}{160}
Mahia ngā whakarea i roto i te hautanga \frac{-45\left(-2\right)}{32\times 5}.
|2-y|=\frac{9}{16}
Whakahekea te hautanga \frac{90}{160} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
|-y+2|=\frac{9}{16}
Pahekotia ngā kīanga tau ōrite me te whakamahi i ngā āhuatanga o te ōritetanga kia kitea te taurangi ki tētahi taha o te tohu ōrite me ngā tau ki tērā atu taha. Me maumahara ki te whai i te raupapa o ngā paheko.
-y+2=\frac{9}{16} -y+2=-\frac{9}{16}
Whakamahia te tautuhinga o te uara pū.
-y=-\frac{23}{16} -y=-\frac{41}{16}
Me tango 2 mai i ngā taha e rua o te whārite.
y=\frac{23}{16} y=\frac{41}{16}
Whakawehea ngā taha e rua ki te -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}