Aromātai
\sqrt{13}\approx 3.605551275
Wāhi Tūturu
\sqrt{13} = 3.605551275
Tohaina
Kua tāruatia ki te papatopenga
|\frac{\left(5-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}|
Me whakarea te taurunga me te tauraro o \frac{5-i}{1+i} ki te haumi hiato o te tauraro, 1-i.
|\frac{\left(5-i\right)\left(1-i\right)}{1^{2}-i^{2}}|
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
|\frac{\left(5-i\right)\left(1-i\right)}{2}|
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
|\frac{5\times 1+5\left(-i\right)-i-\left(-i^{2}\right)}{2}|
Me whakarea ngā tau matatini 5-i me 1-i pēnā i te whakarea huarua.
|\frac{5\times 1+5\left(-i\right)-i-\left(-\left(-1\right)\right)}{2}|
Hei tōna tikanga, ko te i^{2} ko -1.
|\frac{5-5i-i-1}{2}|
Mahia ngā whakarea i roto o 5\times 1+5\left(-i\right)-i-\left(-\left(-1\right)\right).
|\frac{5-1+\left(-5-1\right)i}{2}|
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 5-5i-i-1.
|\frac{4-6i}{2}|
Mahia ngā tāpiri i roto o 5-1+\left(-5-1\right)i.
|2-3i|
Whakawehea te 4-6i ki te 2, kia riro ko 2-3i.
\sqrt{13}
Ko te tau tōpū o tētahi tau matatini a+bi ko \sqrt{a^{2}+b^{2}}. Ko te tau tōpū o 2-3i ko \sqrt{13}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}