Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Wāhi Tūturu
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

|\frac{\left(5-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}|
Me whakarea te taurunga me te tauraro o \frac{5-i}{1+i} ki te haumi hiato o te tauraro, 1-i.
|\frac{\left(5-i\right)\left(1-i\right)}{1^{2}-i^{2}}|
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
|\frac{\left(5-i\right)\left(1-i\right)}{2}|
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
|\frac{5\times 1+5\left(-i\right)-i-\left(-i^{2}\right)}{2}|
Me whakarea ngā tau matatini 5-i me 1-i pēnā i te whakarea huarua.
|\frac{5\times 1+5\left(-i\right)-i-\left(-\left(-1\right)\right)}{2}|
Hei tōna tikanga, ko te i^{2} ko -1.
|\frac{5-5i-i-1}{2}|
Mahia ngā whakarea i roto o 5\times 1+5\left(-i\right)-i-\left(-\left(-1\right)\right).
|\frac{5-1+\left(-5-1\right)i}{2}|
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 5-5i-i-1.
|\frac{4-6i}{2}|
Mahia ngā tāpiri i roto o 5-1+\left(-5-1\right)i.
|2-3i|
Whakawehea te 4-6i ki te 2, kia riro ko 2-3i.
\sqrt{13}
Ko te tau tōpū o tētahi tau matatini a+bi ko \sqrt{a^{2}+b^{2}}. Ko te tau tōpū o 2-3i ko \sqrt{13}.