Aromātai
\frac{25}{24}\approx 1.041666667
Tauwehe
\frac{5 ^ {2}}{2 ^ {3} \cdot 3} = 1\frac{1}{24} = 1.0416666666666667
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
| \frac { 5 } { 6 } | - \frac { 1 } { 2 } + \frac { 17 } { 24 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{5}{6}-\frac{1}{2}+\frac{17}{24}
Ko te uara pū o tētahi tau tūturu a ko a ina a\geq 0, ko -a rānei ina a<0. Ko te uara pū o \frac{5}{6} ko \frac{5}{6}.
\frac{5}{6}-\frac{3}{6}+\frac{17}{24}
Ko te maha noa iti rawa atu o 6 me 2 ko 6. Me tahuri \frac{5}{6} me \frac{1}{2} ki te hautau me te tautūnga 6.
\frac{5-3}{6}+\frac{17}{24}
Tā te mea he rite te tauraro o \frac{5}{6} me \frac{3}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{2}{6}+\frac{17}{24}
Tangohia te 3 i te 5, ka 2.
\frac{1}{3}+\frac{17}{24}
Whakahekea te hautanga \frac{2}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{8}{24}+\frac{17}{24}
Ko te maha noa iti rawa atu o 3 me 24 ko 24. Me tahuri \frac{1}{3} me \frac{17}{24} ki te hautau me te tautūnga 24.
\frac{8+17}{24}
Tā te mea he rite te tauraro o \frac{8}{24} me \frac{17}{24}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{25}{24}
Tāpirihia te 8 ki te 17, ka 25.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}