Aromātai
-\frac{122}{15}\approx -8.133333333
Tauwehe
-\frac{122}{15} = -8\frac{2}{15} = -8.133333333333333
Tohaina
Kua tāruatia ki te papatopenga
|\frac{4}{5}+\frac{\frac{2\left(-12\right)}{3}}{-6}-\left(-3\right)^{2}|+|24+\left(-3\right)^{3}|\left(-5\right)
Tuhia te \frac{2}{3}\left(-12\right) hei hautanga kotahi.
|\frac{4}{5}+\frac{\frac{-24}{3}}{-6}-\left(-3\right)^{2}|+|24+\left(-3\right)^{3}|\left(-5\right)
Whakareatia te 2 ki te -12, ka -24.
|\frac{4}{5}+\frac{-8}{-6}-\left(-3\right)^{2}|+|24+\left(-3\right)^{3}|\left(-5\right)
Whakawehea te -24 ki te 3, kia riro ko -8.
|\frac{4}{5}+\frac{4}{3}-\left(-3\right)^{2}|+|24+\left(-3\right)^{3}|\left(-5\right)
Whakahekea te hautanga \frac{-8}{-6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -2.
|\frac{12}{15}+\frac{20}{15}-\left(-3\right)^{2}|+|24+\left(-3\right)^{3}|\left(-5\right)
Ko te maha noa iti rawa atu o 5 me 3 ko 15. Me tahuri \frac{4}{5} me \frac{4}{3} ki te hautau me te tautūnga 15.
|\frac{12+20}{15}-\left(-3\right)^{2}|+|24+\left(-3\right)^{3}|\left(-5\right)
Tā te mea he rite te tauraro o \frac{12}{15} me \frac{20}{15}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
|\frac{32}{15}-\left(-3\right)^{2}|+|24+\left(-3\right)^{3}|\left(-5\right)
Tāpirihia te 12 ki te 20, ka 32.
|\frac{32}{15}-9|+|24+\left(-3\right)^{3}|\left(-5\right)
Tātaihia te -3 mā te pū o 2, kia riro ko 9.
|\frac{32}{15}-\frac{135}{15}|+|24+\left(-3\right)^{3}|\left(-5\right)
Me tahuri te 9 ki te hautau \frac{135}{15}.
|\frac{32-135}{15}|+|24+\left(-3\right)^{3}|\left(-5\right)
Tā te mea he rite te tauraro o \frac{32}{15} me \frac{135}{15}, me tango rāua mā te tango i ō raua taurunga.
|-\frac{103}{15}|+|24+\left(-3\right)^{3}|\left(-5\right)
Tangohia te 135 i te 32, ka -103.
\frac{103}{15}+|24+\left(-3\right)^{3}|\left(-5\right)
Ko te uara pū o tētahi tau tūturu a ko a ina a\geq 0, ko -a rānei ina a<0. Ko te uara pū o -\frac{103}{15} ko \frac{103}{15}.
\frac{103}{15}+|24-27|\left(-5\right)
Tātaihia te -3 mā te pū o 3, kia riro ko -27.
\frac{103}{15}+|-3|\left(-5\right)
Tangohia te 27 i te 24, ka -3.
\frac{103}{15}+3\left(-5\right)
Ko te uara pū o tētahi tau tūturu a ko a ina a\geq 0, ko -a rānei ina a<0. Ko te uara pū o -3 ko 3.
\frac{103}{15}-15
Whakareatia te 3 ki te -5, ka -15.
\frac{103}{15}-\frac{225}{15}
Me tahuri te 15 ki te hautau \frac{225}{15}.
\frac{103-225}{15}
Tā te mea he rite te tauraro o \frac{103}{15} me \frac{225}{15}, me tango rāua mā te tango i ō raua taurunga.
-\frac{122}{15}
Tangohia te 225 i te 103, ka -122.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}