Whakaoti mō z
z=\frac{1+\sqrt{102399999999}i}{80000000000}\approx 1.25 \cdot 10^{-11}+0.000004i
z=\frac{-\sqrt{102399999999}i+1}{80000000000}\approx 1.25 \cdot 10^{-11}-0.000004i
Tohaina
Kua tāruatia ki te papatopenga
z^{2}-\frac{1}{40000000000}z+\frac{1}{62500000000}=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
z=\frac{-\left(-\frac{1}{40000000000}\right)±\sqrt{\left(-\frac{1}{40000000000}\right)^{2}-4\times \frac{1}{62500000000}}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -\frac{1}{40000000000} mō b, me \frac{1}{62500000000} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-\left(-\frac{1}{40000000000}\right)±\sqrt{\frac{1}{1600000000000000000000}-4\times \frac{1}{62500000000}}}{2}
Pūruatia -\frac{1}{40000000000} mā te pūrua i te taurunga me te tauraro o te hautanga.
z=\frac{-\left(-\frac{1}{40000000000}\right)±\sqrt{\frac{1}{1600000000000000000000}-\frac{1}{15625000000}}}{2}
Whakareatia -4 ki te \frac{1}{62500000000}.
z=\frac{-\left(-\frac{1}{40000000000}\right)±\sqrt{-\frac{102399999999}{1600000000000000000000}}}{2}
Tāpiri \frac{1}{1600000000000000000000} ki te -\frac{1}{15625000000} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
z=\frac{-\left(-\frac{1}{40000000000}\right)±\frac{\sqrt{102399999999}i}{40000000000}}{2}
Tuhia te pūtakerua o te -\frac{102399999999}{1600000000000000000000}.
z=\frac{\frac{1}{40000000000}±\frac{\sqrt{102399999999}i}{40000000000}}{2}
Ko te tauaro o -\frac{1}{40000000000} ko \frac{1}{40000000000}.
z=\frac{1+\sqrt{102399999999}i}{2\times 40000000000}
Nā, me whakaoti te whārite z=\frac{\frac{1}{40000000000}±\frac{\sqrt{102399999999}i}{40000000000}}{2} ina he tāpiri te ±. Tāpiri \frac{1}{40000000000} ki te \frac{i\sqrt{102399999999}}{40000000000}.
z=\frac{1+\sqrt{102399999999}i}{80000000000}
Whakawehe \frac{1+i\sqrt{102399999999}}{40000000000} ki te 2.
z=\frac{-\sqrt{102399999999}i+1}{2\times 40000000000}
Nā, me whakaoti te whārite z=\frac{\frac{1}{40000000000}±\frac{\sqrt{102399999999}i}{40000000000}}{2} ina he tango te ±. Tango \frac{i\sqrt{102399999999}}{40000000000} mai i \frac{1}{40000000000}.
z=\frac{-\sqrt{102399999999}i+1}{80000000000}
Whakawehe \frac{1-i\sqrt{102399999999}}{40000000000} ki te 2.
z=\frac{1+\sqrt{102399999999}i}{80000000000} z=\frac{-\sqrt{102399999999}i+1}{80000000000}
Kua oti te whārite te whakatau.
z^{2}-\frac{1}{40000000000}z+\frac{1}{62500000000}=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
z^{2}-\frac{1}{40000000000}z+\frac{1}{62500000000}-\frac{1}{62500000000}=-\frac{1}{62500000000}
Me tango \frac{1}{62500000000} mai i ngā taha e rua o te whārite.
z^{2}-\frac{1}{40000000000}z=-\frac{1}{62500000000}
Mā te tango i te \frac{1}{62500000000} i a ia ake anō ka toe ko te 0.
z^{2}-\frac{1}{40000000000}z+\left(-\frac{1}{80000000000}\right)^{2}=-\frac{1}{62500000000}+\left(-\frac{1}{80000000000}\right)^{2}
Whakawehea te -\frac{1}{40000000000}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{80000000000}. Nā, tāpiria te pūrua o te -\frac{1}{80000000000} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
z^{2}-\frac{1}{40000000000}z+\frac{1}{6400000000000000000000}=-\frac{1}{62500000000}+\frac{1}{6400000000000000000000}
Pūruatia -\frac{1}{80000000000} mā te pūrua i te taurunga me te tauraro o te hautanga.
z^{2}-\frac{1}{40000000000}z+\frac{1}{6400000000000000000000}=-\frac{102399999999}{6400000000000000000000}
Tāpiri -\frac{1}{62500000000} ki te \frac{1}{6400000000000000000000} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(z-\frac{1}{80000000000}\right)^{2}=-\frac{102399999999}{6400000000000000000000}
Tauwehea z^{2}-\frac{1}{40000000000}z+\frac{1}{6400000000000000000000}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z-\frac{1}{80000000000}\right)^{2}}=\sqrt{-\frac{102399999999}{6400000000000000000000}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
z-\frac{1}{80000000000}=\frac{\sqrt{102399999999}i}{80000000000} z-\frac{1}{80000000000}=-\frac{\sqrt{102399999999}i}{80000000000}
Whakarūnātia.
z=\frac{1+\sqrt{102399999999}i}{80000000000} z=\frac{-\sqrt{102399999999}i+1}{80000000000}
Me tāpiri \frac{1}{80000000000} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}