Whakaoti mō z
z=\frac{3}{1000000}=0.000003
z=-\frac{3}{1000000}=-0.000003
Tohaina
Kua tāruatia ki te papatopenga
z^{2}-25\times \frac{1}{1000000000000}+16\times 10^{-12}=0
Tātaihia te 10 mā te pū o -12, kia riro ko \frac{1}{1000000000000}.
z^{2}-\frac{1}{40000000000}+16\times 10^{-12}=0
Whakareatia te 25 ki te \frac{1}{1000000000000}, ka \frac{1}{40000000000}.
z^{2}-\frac{1}{40000000000}+16\times \frac{1}{1000000000000}=0
Tātaihia te 10 mā te pū o -12, kia riro ko \frac{1}{1000000000000}.
z^{2}-\frac{1}{40000000000}+\frac{1}{62500000000}=0
Whakareatia te 16 ki te \frac{1}{1000000000000}, ka \frac{1}{62500000000}.
z^{2}-\frac{9}{1000000000000}=0
Tāpirihia te -\frac{1}{40000000000} ki te \frac{1}{62500000000}, ka -\frac{9}{1000000000000}.
z^{2}=\frac{9}{1000000000000}
Me tāpiri te \frac{9}{1000000000000} ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
z=\frac{3}{1000000} z=-\frac{3}{1000000}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
z^{2}-25\times \frac{1}{1000000000000}+16\times 10^{-12}=0
Tātaihia te 10 mā te pū o -12, kia riro ko \frac{1}{1000000000000}.
z^{2}-\frac{1}{40000000000}+16\times 10^{-12}=0
Whakareatia te 25 ki te \frac{1}{1000000000000}, ka \frac{1}{40000000000}.
z^{2}-\frac{1}{40000000000}+16\times \frac{1}{1000000000000}=0
Tātaihia te 10 mā te pū o -12, kia riro ko \frac{1}{1000000000000}.
z^{2}-\frac{1}{40000000000}+\frac{1}{62500000000}=0
Whakareatia te 16 ki te \frac{1}{1000000000000}, ka \frac{1}{62500000000}.
z^{2}-\frac{9}{1000000000000}=0
Tāpirihia te -\frac{1}{40000000000} ki te \frac{1}{62500000000}, ka -\frac{9}{1000000000000}.
z=\frac{0±\sqrt{0^{2}-4\left(-\frac{9}{1000000000000}\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -\frac{9}{1000000000000} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{0±\sqrt{-4\left(-\frac{9}{1000000000000}\right)}}{2}
Pūrua 0.
z=\frac{0±\sqrt{\frac{9}{250000000000}}}{2}
Whakareatia -4 ki te -\frac{9}{1000000000000}.
z=\frac{0±\frac{3}{500000}}{2}
Tuhia te pūtakerua o te \frac{9}{250000000000}.
z=\frac{3}{1000000}
Nā, me whakaoti te whārite z=\frac{0±\frac{3}{500000}}{2} ina he tāpiri te ±.
z=-\frac{3}{1000000}
Nā, me whakaoti te whārite z=\frac{0±\frac{3}{500000}}{2} ina he tango te ±.
z=\frac{3}{1000000} z=-\frac{3}{1000000}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}