Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Whakaoti mō y
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

z^{2}+xz+2z+y\left(1-2\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te z.
z^{2}+xz+2z+y\left(-1\right)=0
Tangohia te 2 i te 1, ka -1.
xz+2z+y\left(-1\right)=-z^{2}
Tangohia te z^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
xz+y\left(-1\right)=-z^{2}-2z
Tangohia te 2z mai i ngā taha e rua.
xz=-z^{2}-2z-y\left(-1\right)
Tangohia te y\left(-1\right) mai i ngā taha e rua.
xz=-z^{2}-2z+y
Whakareatia te -1 ki te -1, ka 1.
zx=y-z^{2}-2z
He hanga arowhānui tō te whārite.
\frac{zx}{z}=\frac{y-z^{2}-2z}{z}
Whakawehea ngā taha e rua ki te z.
x=\frac{y-z^{2}-2z}{z}
Mā te whakawehe ki te z ka wetekia te whakareanga ki te z.
x=-z+\frac{y}{z}-2
Whakawehe -z^{2}-2z+y ki te z.
z^{2}+xz+2z+y\left(1-2\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te z.
z^{2}+xz+2z+y\left(-1\right)=0
Tangohia te 2 i te 1, ka -1.
xz+2z+y\left(-1\right)=-z^{2}
Tangohia te z^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
xz+y\left(-1\right)=-z^{2}-2z
Tangohia te 2z mai i ngā taha e rua.
xz=-z^{2}-2z-y\left(-1\right)
Tangohia te y\left(-1\right) mai i ngā taha e rua.
xz=-z^{2}-2z+y
Whakareatia te -1 ki te -1, ka 1.
zx=y-z^{2}-2z
He hanga arowhānui tō te whārite.
\frac{zx}{z}=\frac{y-z^{2}-2z}{z}
Whakawehea ngā taha e rua ki te z.
x=\frac{y-z^{2}-2z}{z}
Mā te whakawehe ki te z ka wetekia te whakareanga ki te z.
x=-z+\frac{y}{z}-2
Whakawehe -z^{2}-2z+y ki te z.
z^{2}+xz+2z+y\left(1-2\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te z.
z^{2}+xz+2z+y\left(-1\right)=0
Tangohia te 2 i te 1, ka -1.
xz+2z+y\left(-1\right)=-z^{2}
Tangohia te z^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
2z+y\left(-1\right)=-z^{2}-xz
Tangohia te xz mai i ngā taha e rua.
y\left(-1\right)=-z^{2}-xz-2z
Tangohia te 2z mai i ngā taha e rua.
-y=-xz-z^{2}-2z
He hanga arowhānui tō te whārite.
\frac{-y}{-1}=-\frac{z\left(x+z+2\right)}{-1}
Whakawehea ngā taha e rua ki te -1.
y=-\frac{z\left(x+z+2\right)}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
y=z\left(x+z+2\right)
Whakawehe -z\left(2+z+x\right) ki te -1.