Whakaoti mō x (complex solution)
\left\{\begin{matrix}x=-z+\frac{y}{z}-2\text{, }&z\neq 0\\x\in \mathrm{C}\text{, }&y=0\text{ and }z=0\end{matrix}\right.
Whakaoti mō x
\left\{\begin{matrix}x=-z+\frac{y}{z}-2\text{, }&z\neq 0\\x\in \mathrm{R}\text{, }&y=0\text{ and }z=0\end{matrix}\right.
Whakaoti mō y
y=z\left(x+z+2\right)
Tohaina
Kua tāruatia ki te papatopenga
z^{2}+xz+2z+y\left(1-2\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te z.
z^{2}+xz+2z+y\left(-1\right)=0
Tangohia te 2 i te 1, ka -1.
xz+2z+y\left(-1\right)=-z^{2}
Tangohia te z^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
xz+y\left(-1\right)=-z^{2}-2z
Tangohia te 2z mai i ngā taha e rua.
xz=-z^{2}-2z-y\left(-1\right)
Tangohia te y\left(-1\right) mai i ngā taha e rua.
xz=-z^{2}-2z+y
Whakareatia te -1 ki te -1, ka 1.
zx=y-z^{2}-2z
He hanga arowhānui tō te whārite.
\frac{zx}{z}=\frac{y-z^{2}-2z}{z}
Whakawehea ngā taha e rua ki te z.
x=\frac{y-z^{2}-2z}{z}
Mā te whakawehe ki te z ka wetekia te whakareanga ki te z.
x=-z+\frac{y}{z}-2
Whakawehe -z^{2}-2z+y ki te z.
z^{2}+xz+2z+y\left(1-2\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te z.
z^{2}+xz+2z+y\left(-1\right)=0
Tangohia te 2 i te 1, ka -1.
xz+2z+y\left(-1\right)=-z^{2}
Tangohia te z^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
xz+y\left(-1\right)=-z^{2}-2z
Tangohia te 2z mai i ngā taha e rua.
xz=-z^{2}-2z-y\left(-1\right)
Tangohia te y\left(-1\right) mai i ngā taha e rua.
xz=-z^{2}-2z+y
Whakareatia te -1 ki te -1, ka 1.
zx=y-z^{2}-2z
He hanga arowhānui tō te whārite.
\frac{zx}{z}=\frac{y-z^{2}-2z}{z}
Whakawehea ngā taha e rua ki te z.
x=\frac{y-z^{2}-2z}{z}
Mā te whakawehe ki te z ka wetekia te whakareanga ki te z.
x=-z+\frac{y}{z}-2
Whakawehe -z^{2}-2z+y ki te z.
z^{2}+xz+2z+y\left(1-2\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te z.
z^{2}+xz+2z+y\left(-1\right)=0
Tangohia te 2 i te 1, ka -1.
xz+2z+y\left(-1\right)=-z^{2}
Tangohia te z^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
2z+y\left(-1\right)=-z^{2}-xz
Tangohia te xz mai i ngā taha e rua.
y\left(-1\right)=-z^{2}-xz-2z
Tangohia te 2z mai i ngā taha e rua.
-y=-xz-z^{2}-2z
He hanga arowhānui tō te whārite.
\frac{-y}{-1}=-\frac{z\left(x+z+2\right)}{-1}
Whakawehea ngā taha e rua ki te -1.
y=-\frac{z\left(x+z+2\right)}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
y=z\left(x+z+2\right)
Whakawehe -z\left(2+z+x\right) ki te -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}