Whakaoti mō y
y=3+4i
y=3-4i
Tohaina
Kua tāruatia ki te papatopenga
y^{2}-6y+25=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 25}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -6 mō b, me 25 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-6\right)±\sqrt{36-4\times 25}}{2}
Pūrua -6.
y=\frac{-\left(-6\right)±\sqrt{36-100}}{2}
Whakareatia -4 ki te 25.
y=\frac{-\left(-6\right)±\sqrt{-64}}{2}
Tāpiri 36 ki te -100.
y=\frac{-\left(-6\right)±8i}{2}
Tuhia te pūtakerua o te -64.
y=\frac{6±8i}{2}
Ko te tauaro o -6 ko 6.
y=\frac{6+8i}{2}
Nā, me whakaoti te whārite y=\frac{6±8i}{2} ina he tāpiri te ±. Tāpiri 6 ki te 8i.
y=3+4i
Whakawehe 6+8i ki te 2.
y=\frac{6-8i}{2}
Nā, me whakaoti te whārite y=\frac{6±8i}{2} ina he tango te ±. Tango 8i mai i 6.
y=3-4i
Whakawehe 6-8i ki te 2.
y=3+4i y=3-4i
Kua oti te whārite te whakatau.
y^{2}-6y+25=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
y^{2}-6y+25-25=-25
Me tango 25 mai i ngā taha e rua o te whārite.
y^{2}-6y=-25
Mā te tango i te 25 i a ia ake anō ka toe ko te 0.
y^{2}-6y+\left(-3\right)^{2}=-25+\left(-3\right)^{2}
Whakawehea te -6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -3. Nā, tāpiria te pūrua o te -3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}-6y+9=-25+9
Pūrua -3.
y^{2}-6y+9=-16
Tāpiri -25 ki te 9.
\left(y-3\right)^{2}=-16
Tauwehea y^{2}-6y+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-3\right)^{2}}=\sqrt{-16}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y-3=4i y-3=-4i
Whakarūnātia.
y=3+4i y=3-4i
Me tāpiri 3 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}