Whakaoti mō y
y=2\sqrt{3}+5\approx 8.464101615
y=5-2\sqrt{3}\approx 1.535898385
Graph
Tohaina
Kua tāruatia ki te papatopenga
y^{2}-10y+13=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 13}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -10 mō b, me 13 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-10\right)±\sqrt{100-4\times 13}}{2}
Pūrua -10.
y=\frac{-\left(-10\right)±\sqrt{100-52}}{2}
Whakareatia -4 ki te 13.
y=\frac{-\left(-10\right)±\sqrt{48}}{2}
Tāpiri 100 ki te -52.
y=\frac{-\left(-10\right)±4\sqrt{3}}{2}
Tuhia te pūtakerua o te 48.
y=\frac{10±4\sqrt{3}}{2}
Ko te tauaro o -10 ko 10.
y=\frac{4\sqrt{3}+10}{2}
Nā, me whakaoti te whārite y=\frac{10±4\sqrt{3}}{2} ina he tāpiri te ±. Tāpiri 10 ki te 4\sqrt{3}.
y=2\sqrt{3}+5
Whakawehe 10+4\sqrt{3} ki te 2.
y=\frac{10-4\sqrt{3}}{2}
Nā, me whakaoti te whārite y=\frac{10±4\sqrt{3}}{2} ina he tango te ±. Tango 4\sqrt{3} mai i 10.
y=5-2\sqrt{3}
Whakawehe 10-4\sqrt{3} ki te 2.
y=2\sqrt{3}+5 y=5-2\sqrt{3}
Kua oti te whārite te whakatau.
y^{2}-10y+13=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
y^{2}-10y+13-13=-13
Me tango 13 mai i ngā taha e rua o te whārite.
y^{2}-10y=-13
Mā te tango i te 13 i a ia ake anō ka toe ko te 0.
y^{2}-10y+\left(-5\right)^{2}=-13+\left(-5\right)^{2}
Whakawehea te -10, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -5. Nā, tāpiria te pūrua o te -5 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}-10y+25=-13+25
Pūrua -5.
y^{2}-10y+25=12
Tāpiri -13 ki te 25.
\left(y-5\right)^{2}=12
Tauwehea y^{2}-10y+25. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-5\right)^{2}}=\sqrt{12}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y-5=2\sqrt{3} y-5=-2\sqrt{3}
Whakarūnātia.
y=2\sqrt{3}+5 y=5-2\sqrt{3}
Me tāpiri 5 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}