Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y^{2}-4=0
Tangohia te 4 mai i ngā taha e rua.
\left(y-2\right)\left(y+2\right)=0
Whakaarohia te y^{2}-4. Tuhia anō te y^{2}-4 hei y^{2}-2^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
y=2 y=-2
Hei kimi otinga whārite, me whakaoti te y-2=0 me te y+2=0.
y=2 y=-2
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y^{2}-4=0
Tangohia te 4 mai i ngā taha e rua.
y=\frac{0±\sqrt{0^{2}-4\left(-4\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\left(-4\right)}}{2}
Pūrua 0.
y=\frac{0±\sqrt{16}}{2}
Whakareatia -4 ki te -4.
y=\frac{0±4}{2}
Tuhia te pūtakerua o te 16.
y=2
Nā, me whakaoti te whārite y=\frac{0±4}{2} ina he tāpiri te ±. Whakawehe 4 ki te 2.
y=-2
Nā, me whakaoti te whārite y=\frac{0±4}{2} ina he tango te ±. Whakawehe -4 ki te 2.
y=2 y=-2
Kua oti te whārite te whakatau.