Tīpoka ki ngā ihirangi matua
Whakaoti mō y (complex solution)
Tick mark Image
Whakaoti mō y
Tick mark Image
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2y^{-1}=x^{3}+1
Whakareatia ngā taha e rua o te whārite ki te 2.
2\times \frac{1}{y}=x^{3}+1
Whakaraupapatia anō ngā kīanga tau.
2\times 1=yx^{3}+y
Tē taea kia ōrite te tāupe y ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te y.
2=yx^{3}+y
Whakareatia te 2 ki te 1, ka 2.
yx^{3}+y=2
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(x^{3}+1\right)y=2
Pahekotia ngā kīanga tau katoa e whai ana i te y.
\frac{\left(x^{3}+1\right)y}{x^{3}+1}=\frac{2}{x^{3}+1}
Whakawehea ngā taha e rua ki te x^{3}+1.
y=\frac{2}{x^{3}+1}
Mā te whakawehe ki te x^{3}+1 ka wetekia te whakareanga ki te x^{3}+1.
y=\frac{2}{\left(x+1\right)\left(x^{2}-x+1\right)}
Whakawehe 2 ki te x^{3}+1.
y=\frac{2}{\left(x+1\right)\left(x^{2}-x+1\right)}\text{, }y\neq 0
Tē taea kia ōrite te tāupe y ki 0.
2y^{-1}=x^{3}+1
Whakareatia ngā taha e rua o te whārite ki te 2.
2\times \frac{1}{y}=x^{3}+1
Whakaraupapatia anō ngā kīanga tau.
2\times 1=yx^{3}+y
Tē taea kia ōrite te tāupe y ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te y.
2=yx^{3}+y
Whakareatia te 2 ki te 1, ka 2.
yx^{3}+y=2
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(x^{3}+1\right)y=2
Pahekotia ngā kīanga tau katoa e whai ana i te y.
\frac{\left(x^{3}+1\right)y}{x^{3}+1}=\frac{2}{x^{3}+1}
Whakawehea ngā taha e rua ki te x^{3}+1.
y=\frac{2}{x^{3}+1}
Mā te whakawehe ki te x^{3}+1 ka wetekia te whakareanga ki te x^{3}+1.
y=\frac{2}{\left(x+1\right)\left(x^{2}-x+1\right)}
Whakawehe 2 ki te x^{3}+1.
y=\frac{2}{\left(x+1\right)\left(x^{2}-x+1\right)}\text{, }y\neq 0
Tē taea kia ōrite te tāupe y ki 0.