Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{6}=6x^{3}-125
Tātaihia te 5 mā te pū o 3, kia riro ko 125.
x^{6}-6x^{3}=-125
Tangohia te 6x^{3} mai i ngā taha e rua.
x^{6}-6x^{3}+125=0
Me tāpiri te 125 ki ngā taha e rua.
t^{2}-6t+125=0
Whakakapia te t mō te x^{3}.
t=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 1\times 125}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -6 mō te b, me te 125 mō te c i te ture pūrua.
t=\frac{6±\sqrt{-464}}{2}
Mahia ngā tātaitai.
t=3+2\sqrt{29}i t=-2\sqrt{29}i+3
Whakaotia te whārite t=\frac{6±\sqrt{-464}}{2} ina he tōrunga te ±, ina he tōraro te ±.
x=\sqrt{5}e^{\frac{\arctan(\frac{2\sqrt{29}}{3})i+4\pi i}{3}} x=\sqrt{5}e^{\frac{\arctan(\frac{2\sqrt{29}}{3})i+2\pi i}{3}} x=\sqrt{5}e^{\frac{\arctan(\frac{2\sqrt{29}}{3})i}{3}} x=\sqrt{5}e^{-\frac{\arctan(\frac{2\sqrt{29}}{3})i}{3}} x=\sqrt{5}e^{\frac{-\arctan(\frac{2\sqrt{29}}{3})i+4\pi i}{3}} x=\sqrt{5}e^{\frac{-\arctan(\frac{2\sqrt{29}}{3})i+2\pi i}{3}}
Mai i te x=t^{3}, ka taea ngā otinga mā te whakaoti te whārite mō ia t.