Tauwehe
\left(x-11\right)\left(x+11\right)\left(x^{2}+16\right)
Aromātai
x^{4}-105x^{2}-1936
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{4}-105x^{2}-1936=0
Kia tauwehea ai te kīanga, me whakaoti te whārite ina ōrite ki te 0.
±1936,±968,±484,±242,±176,±121,±88,±44,±22,±16,±11,±8,±4,±2,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -1936, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=11
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{3}+11x^{2}+16x+176=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te x^{4}-105x^{2}-1936 ki te x-11, kia riro ko x^{3}+11x^{2}+16x+176. Kia tauwehea ai te otinga, me whakaoti te whārite ina ōrite ki te 0.
±176,±88,±44,±22,±16,±11,±8,±4,±2,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau 176, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=-11
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{2}+16=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te x^{3}+11x^{2}+16x+176 ki te x+11, kia riro ko x^{2}+16. Kia tauwehea ai te otinga, me whakaoti te whārite ina ōrite ki te 0.
x=\frac{0±\sqrt{0^{2}-4\times 1\times 16}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 0 mō te b, me te 16 mō te c i te ture pūrua.
x=\frac{0±\sqrt{-64}}{2}
Mahia ngā tātaitai.
x^{2}+16
Kāore te pūrau x^{2}+16 i whakatauwehea i te mea kāhore ōna pūtake whakahau.
\left(x-11\right)\left(x+11\right)\left(x^{2}+16\right)
Me tuhi anō te kīanga whakatauwehe mā ngā pūtake i riro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}