Tauwehe
\frac{x\left(x+1\right)\left(6x^{2}+14x-5\right)}{6}
Aromātai
\frac{x\left(x+1\right)\left(6x^{2}+14x-5\right)}{6}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{6x^{4}+20x^{3}+9x^{2}-5x}{6}
Tauwehea te \frac{1}{6}.
x\left(6x^{3}+20x^{2}+9x-5\right)
Whakaarohia te 6x^{4}+20x^{3}+9x^{2}-5x. Tauwehea te x.
\left(x+1\right)\left(6x^{2}+14x-5\right)
Whakaarohia te 6x^{3}+20x^{2}+9x-5. Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -5, ā, ka wehea e q te whakarea arahanga 6. Ko tetahi pūtake pērā ko -1. Tauwehea te pūrau mā te whakawehe mā te x+1.
\frac{x\left(x+1\right)\left(6x^{2}+14x-5\right)}{6}
Me tuhi anō te kīanga whakatauwehe katoa. Kāore te pūrau 6x^{2}+14x-5 i whakatauwehea i te mea kāhore ōna pūtake whakahau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}